M. Vable

Thermal Analysis

One-dimensional heat conduction

Axial Member

Heat Conduction

Differential
Equation

d du
(EAd_ ~ Px

dx
EA= Axial Rigidity
p,.= force per unit length

d(ﬂj:,
Ekdx Ix

k= Thermal conductivity

q,— Heat flow (source) per unit
length.

f,=heat flux per unit area= q, A

Primary variable

u= Displacement in x-direction

T= Temperature

Secondary vari-

able Internal axial force: N = EAd—u Heat flow: q = fkﬁ
dx dx
Positive: Flow into body
Energy Strain Energy: Heat Capacity:
Jea(g) LK)
U =z|EAl—] d Ur = z|kl=—] d
2-[ dx . T 2-[ dx .
I I
Work Potential:
L m L m
W = Ipxudx+ 3 Fou(xy) W, = qude+ T QT(xy)
0 q=1 0 q=1
Functional Potential Energy
Qf = Uy Wy r = Up— Wy
Rayleigh-Ritz Hi Hi
uwx) = 3 CGfi(x) T(x) = 3 CGfi(x)
i=1 i=1
Matrix L L
dfx pdf df~ rdf
Iy Ci)(Zx N O _k)
Ki = | EA(dx) (dX)dX Kj = | k(dx) (a’x &
0 0
Right Hand Side L - L -
Vector _ —
Rj = fpef dx+ ¥ Fofi(xy) R; = [ayfy dx+ 30 Qqfi(xy)
0 q=1 0 q=1

Other Applications:

Flow through pipes; Flow through porous media; Electrostatics
By non-dimensionalizing the problem a software can be used to solve all the
above applications.
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Linear Elements:

T = TEE)Ll(X) + T(;)LQ(X) Q(le)_"f' '*_Q(ze:
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Quadratic Elements:

T = TEE)Ll(X)+T(26)L2(X)+Tg6)L3(X) Q(le)_.é' L. ‘*_Q:%e}
(@)
W |78 o Lo @
= €
K] = —|-816 8] (R} ==F—14,770
1 -8 7 1 )

Class Problem 1

Heat q, 1s being added at point B at a constant rate as shown in Fig. 1. Using two
linear elements determine the temperature at point B and the heat flowing out at A
and C 1n terms of k, L, and q,, for the following two cases: (a) The ends of the bar

are maintained at a constant zero temperature. (b) The ends of the bars are main-
tained at a constant temperature T,,.

2 e 7 3%& Go g
AA B q A B oC D

7 L oL I % b L ==} L =] L = 7

Home Problem 1

Heat 3q, 1s being added at point B and q,, 1s being taken out at a constant rate at

point C as shown in Fig. 2. Using three linear elements determine the temperature at
points B and C and the heat flowing out at A and D in terms of k, L, and q,, for the

following two cases: (a) The ends of the bar are maintained at a constant zero tem-
perature. (b) The ends of the bars A and D are maintained at a temperature T, and

2T, respectively. ANS: 1, = (5¢,L)/3k T, = (q,L)/3k g, = ~(5q,/3)
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Thermal Stresses

Stress-strain curve with temperature effects
A

Normal Stress ¢

oL L
|7—4<— o] Normal Strain ¢
aAT E

St+a AT = 2+¢
E E ©

oo = linear coefficient of thermal expansion.
€, = Initial strain= Thermal strain

where,

® No thermal stresses are produced in a homogenous, 1sotropic,
unconstrained body due to uniform temperature changes.

Axial Problem
We assume that the thermal problem and stress analysis problem can be solved
independently.
Oxx = BBy 8)
L
U, = I%cxx(sxxfso)dv = j%E(sXX— g,) Adx or

v 0
L L L L 2 L
¢l 2 1 2. rl du du
Upr = IZEASXXdX—jEASXXsOdXJrIZEAsOdX = jZEA(d— dijAso(ﬁ)deo
0 0 0 0 0
L m
W, = jpx(x)u(x)dx+ ¥ Fau(xy)
0 gq=1
L ’ L L m
1 du du
Q, = Uyp—W, = IEEA(d— dijAso(d— dx + Uy~ | fp()ux)dx + 3 Fou(x,)
0 0 0 gq=1
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L
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. ~EAQAT,
where, =
- EAGAT,

AT = Constant q, = 0
Linear Element:

EA
L

Quadratic Element:

1 -1
-11

(K] =

gal7 81
S| 8 16 -8

1 87

(K] =

L

0

} PxT =

Special case: Constant Temperature Change

(e) _ poL 1 pToL
R = +
} ey =B

m

qg=1
L

Wyt = Ipx(x)u(x)der Z Fqu(xq)+IEAso(%)dx

0
L

]
L

EAaAT, u(L) - EAaATu(0) + j(%‘qx)udx, where q, = —k

0

m

q=1

~ EAa
qu

L
(R) - =2

L

Q, = j%EA(%)de+UO— [pioucds + 3 Fqu(xq)+jEAso(%)dx

0

L

0

dar
dax

War = [[px(0) +pyr()Tu(0)ds + 3 Fqu(xy) + Frpu(L) + Frju(0)

* Thermal loads are added only at the element ends.

(e) (e)

1 F Frj

’ (e) (e)

1 e e
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1 Fge)

duy, L dso) _ L (d )
J.EASO(E)dX = EAsgu(x)| —J‘EA(& udx = EAaATu(x)|, —IEAOL AT Judx
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Class Problem 2

Heat g, 1s being added at point B at a constant rate as shown in I'ig. 3. Using two

quadratic elements determine the displacement of node B, reaction force at A and
the axial stress just before B in terms of E, A, o, k, L, and q,,. Assume that the entire

bar was at zero temperature and the ends of the bars are maintained at zero tempera-
ture.

” o y 3¢, Go

1A B C A B +C D

—r u I P
I, 2L Z L L L %

Fig.3 Fig .4

Home Problem 2

Heat 3q, 1s bemng added at point B and q, 1s being taken out at a constant rate at

point C as shown in Fig. 4. Using three linear elements determine the displacements
of points B and C, the reaction force at A, and the axial stress just before B in terms
of E. A, a, k, L, and q,. Assume that the entire bar was at zero temperature and the

ends of the bars are maintained at zero temperature.

Saq L’  7aq,L’ r. _ SEAaqL

18K Ye T TRk A ok

ANS:up =
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2-D Steady State Thermal Analysis

2 2
Differential Equation: k[a_T2+a_T2J = —q, OF kV'T = —q,
0x Oy

Functional (Stored Heat):

Up - !{ Ik[(g)er(g—Dz}tdxdy

where t= thickness of the body.

ar ar
5 5
Up = 171 )7 hdxdy
A |oT o1
dy oy

Isotropic material: [k] = k -——-scaler quantity.

Element Approximation:

S
) (e) T(;)
T(x) = Y TRy = 6 £ o e £
f 1
T,
f}(x.y) are Lagrange Polynomials.
_ i T(le)
ox| BB ax AR L g
A ofy Of, Ofy of,
ay ay a % ...... 6y
Tt
n

Up = [[20a93 B 1B 3taxdy = 2y KT
A

Expanding Educational Horizons



M. Vable Thermal Analysis

Element Conductivity Matrix

K] = 81 K 1B tdxdy
A
Heat Conduction Boundary Conditions

gl (@ or ) _
—k= ki aX1r1x+ayny dy
where, n= direction of the unit normal to the boundary.

ng, 0y = direction cosines of the unit normal to the boundary.
q, = specified heat flow in the n-direction on the boundary.

Right Hand Side Vector:

fy fi
f f
R = [[aq] - }tdxdy+ [q .} tds
A . @
fn fn
where, '® = the boundary of the element.

s= tangential coordinate along the element boundary.
Convection Boundary Conditions

oT
k= = h(T;-T)
where, h = convection heat transfer coefficients

T¢= Temperature of the surrounding fluid

* h depends upon many factors: velocity of fluid, viscosity of fluid, density of
fluid, and other properties of fluid. It also depends upon the surface roughness
and surface geometry.

Addition to Element Matrix: K = | bt fitds

F(e)

Addition to Element Right Hand Side Vector: R = | h'F T tds
F(e)

° If ' is an element boundary in the interior, then there 1s no convection
there and hence no addition to the matrix or the element RHS vector.
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Radiation Boundary Condition:

Heat radiated 1s proportional to the difference in the fourth power of temperature
between the radiating bodies.

JoT 4 4
k= = Bo(T; - T)
where, B 1s the proportionality constant.

T} 15 the temperature of the other radiating body.
Temperatures T, and T are in absolute degrees i.e., °K.

® For two infinite parallel black bodies (planes) it 1s called the Boltzmann
constant. For regular bodies B~ depends upon the emissivity of the bodies,
the geometry and other factors.

¢ Radiation boundary conditions lead to non-linear thermal problem.
A general approach is:

Jr 2 7
—k% = Bo(T, + T" (T, + TXT,-T) = h(T,.-T)

In the iteration process, at each step treat the radiation boundary condition like a
convection term with coefficient dependent upon the temperature at a particular
step.
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