One-dimensional heat conduction

	Axial Member	Heat Conduction
Differential Equation	$\frac{d}{dx} \left(EA \frac{du}{dx} \right) = -p_x$ EA= Axial Rigidity $p_x = \text{force per unit length}$	$\frac{d}{dx} \left(k \frac{dT}{dx} \right) = -q_x$ k= Thermal conductivity q_x = Heat flow (source) per unit length. f_x =heat flux per unit area= q_x A
Primary variable	u= Displacement in x-direction	T= Temperature
Secondary variable	Internal axial force: $N = EA \frac{d\mathbf{u}}{d\mathbf{x}}$	Heat flow: $q = -k \frac{d\Gamma}{dx}$ Positive: Flow into body
Energy	Strain Energy:	Heat Capacity:
	$U = \frac{1}{2} \int_{L} E A \left(\frac{du}{dx} \right)^{2} dx$	$U_{T} = \frac{1}{2} \int_{L} k \left(\frac{dT}{dx} \right)^{2} dx$
	Work Potential:	
	$W_{A} = \int_{0}^{L} p_{x} u dx + \sum_{q=1}^{m} F_{q} u(x_{q})$	$W_{T} = \int_{0}^{L} q_{x} T dx + \sum_{q=1}^{m} Q_{q} T(x_{q})$
Functional	Potential Energy $\Omega_A = U_A - W_A$	$\Omega_{\mathrm{T}} = \mathrm{U}_{\mathrm{T}} - \mathrm{W}_{\mathrm{T}}$
Rayleigh-Ritz	n	n
	$u(x) = \sum_{i=1} C_i f_i(x)$	$T(x) = \sum_{i=1} C_i f_i(x)$
Matrix	$K_{jk} = \int_{0}^{L} EA\left(\frac{df_{j}}{dx}\right) \left(\frac{df_{k}}{dx}\right) dx$	$K_{jk} = \int_{0}^{L} k \left(\frac{df_{j}}{dx}\right) \left(\frac{df_{k}}{dx}\right) dx$
Right Hand Side Vector	$R_{j} = \int_{0}^{L} p_{x} f_{j} dx + \sum_{q=1}^{m} F_{q} f_{j}(x_{q})$	$R_{j} = \int_{0}^{L} q_{x} f_{j} dx + \sum_{q=1}^{m} Q_{q} f_{j}(x_{q})$

Other Applications:

Flow through pipes; Flow through porous media; Electrostatics

• By non-dimensionalizing the problem a software can be used to solve all the above applications.

Linear Elements:

$$T = T_1^{(e)} L_1(x) + T_2^{(e)} L_2(x)$$

$$Q_1^{(e)} - Q_2^{(e)} - Q_2^{(e)}$$

$$[K^{(e)}] = \frac{k^{(e)}}{L^{(e)}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\{R^{(e)}\} = \frac{q_x^{(e)} L^{(e)}}{2} \{1 \\ 1 \} + \{Q_1^{(e)}\}$$

$$[K^{(e)}] = \frac{k^{(e)}A^{(e)}}{L^{(e)}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \qquad \{R^{(e)}\} = \frac{f_x^{(e)}L^{(e)}}{2} \begin{Bmatrix} 1 \\ 1 \end{Bmatrix} + A \begin{Bmatrix} Q_1^{(e)} \\ Q_2^{(e)} \end{Bmatrix}$$

Quadratic Elements:

$$T = T_1^{(e)} L_1(x) + T_2^{(e)} L_2(x) + T_3^{(e)} L_3(x) \qquad Q_1^{(e)} - Q_3^{(e)} - Q_3$$

Class Problem 1

Heat q_o is being added at point B at a constant rate as shown in Fig. 1. Using two linear elements determine the temperature at point B and the heat flowing out at A and C in terms of k, L, and q_o for the following two cases: (a) The ends of the bar are maintained at a constant zero temperature. (b) The ends of the bars are maintained at a constant temperature T_o .

Home Problem 1

Heat $3q_o$ is being added at point B and q_o is being taken out at a constant rate at point C as shown in Fig. 2. Using three linear elements determine the temperature at points B and C and the heat flowing out at A and D in terms of k, L, and q_o for the following two cases: (a) The ends of the bar are maintained at a constant zero temperature. (b) The ends of the bars A and D are maintained at a temperature T_o and

$$2T_o$$
, respectively. ANS: $T_B = (5q_oL)/3k$ $T_C = (q_oL)/3k$ $q_A = -(5q_o/3)$

Thermal Stresses

Stress-strain curve with temperature effects

$$\varepsilon = \frac{\sigma}{E} + \alpha \Delta T = \frac{\sigma}{E} + \varepsilon_o$$

where,

 α = linear coefficient of thermal expansion.

 ε_0 = Initial strain= Thermal strain

• No thermal stresses are produced in a homogenous, isotropic, unconstrained body due to uniform temperature changes.

Axial Problem

We assume that the thermal problem and stress analysis problem can be solved independently.

$$\sigma_{xx} = E(\varepsilon_{xx} - \varepsilon_0)$$

$$U_{AT} = \int_{V}^{1} \sigma_{xx} (\epsilon_{xx} - \epsilon_{o}) dV = \int_{0}^{L} \left[\frac{1}{2} E(\epsilon_{xx} - \epsilon_{o})^{2} A dx \right] dx$$
 or

$$U_{AT} = \int_{V}^{1} \frac{1}{2} \sigma_{xx} (\epsilon_{xx} - \epsilon_{o}) dV = \int_{0}^{1} \frac{1}{2} E(\epsilon_{xx} - \epsilon_{o})^{2} A dx \text{ or}$$

$$U_{AT} = \int_{0}^{L} \frac{1}{2} E A \epsilon_{xx}^{2} dx - \int_{0}^{L} E A \epsilon_{xx} \epsilon_{o} dx + \int_{0}^{L} \frac{1}{2} E A \epsilon_{o}^{2} dx = \int_{0}^{L} \frac{1}{2} E A \left(\frac{du}{dx}\right)^{2} dx - \int_{0}^{L} E A \epsilon_{o} \left(\frac{du}{dx}\right) dx + U_{o}$$

$$U_{AT} = \int_{0}^{L} \rho_{xx} (x) u(x) dx + \sum_{0}^{L} E u(x)$$

$$W_{A} = \int_{0}^{L} p_{x}(x)u(x)dx + \sum_{q=1}^{m} F_{q}u(x_{q})$$

$$\Omega_{A} = U_{AT} - W_{A} = \int_{0}^{L} \frac{1}{2} EA \left(\frac{du}{dx}\right)^{2} dx - \int_{0}^{L} EA \epsilon_{o} \left(\frac{du}{dx}\right) dx + U_{o} - \left[\int_{0}^{L} p_{x}(x)u(x)dx + \sum_{q=1}^{m} F_{q}u(x_{q})\right]$$

$$\begin{split} &\Omega_A = \int\limits_0^L \frac{1}{2} EA \left(\frac{du}{dx}\right)^2 dx + U_o - \left[\int\limits_0^L p_X(x) u(x) dx + \sum\limits_{q=1}^m F_q u(x_q) + \int\limits_0^L EA\epsilon_o \left(\frac{du}{dx}\right) dx \right] = U_A - W_{AT} \\ &W_{AT} = \int\limits_0^L p_X(x) u(x) dx + \sum\limits_{q=1}^m F_q u(x_q) + \int\limits_0^L EA\epsilon_o \left(\frac{du}{dx}\right) dx \\ &I = \int\limits_0^L EA\epsilon_o \left(\frac{du}{dx}\right) dx = EA\epsilon_o u(x) \Big|_0^L - \int\limits_0^L EA \left(\frac{d\epsilon_o}{dx}\right) u dx = EA\alpha\Delta T u(x) \Big|_0^L - \int\limits_0^L EA\alpha \left(\frac{d}{dx}\Delta T\right) u dx \\ &I = EA\alpha\Delta T_L u(L) - EA\alpha\Delta T_0 u(0) + \int\limits_0^L \left(\frac{EA\alpha}{k}q_x\right) u dx \,, \, \text{where } q_x = -k\frac{dT}{dx} \end{split}$$

$$&W_{AT} = \int\limits_0^L [p_X(x) + p_{XT}(x)] u(x) dx + \sum\limits_{q=1}^m F_q u(x_q) + F_{T2} u(L) + F_{T1} u(0) \\ &W_{AT} = \begin{cases} F_{T1} \\ F_{T2} \end{cases} = \begin{cases} -EA\alpha\Delta T_1 \\ EA\alpha\Delta T_2 \end{cases} \qquad p_{XT} = \frac{EA\alpha}{k}q_x \end{split}$$

Special case: Constant Temperature Change

$$\Delta T = Constant$$
 $q_x = 0$

• Thermal loads are added only at the element ends.

Linear Element:

$$[K^{(e)}] = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\{R^{(e)}\} = \frac{p_o L}{2} \begin{Bmatrix} 1 \\ 1 \end{Bmatrix} + \frac{p_{To} L}{2} \begin{Bmatrix} 1 \\ 1 \end{Bmatrix} + \begin{cases} F_1^{(e)} \\ F_2^{(e)} \end{Bmatrix} + \begin{cases} F_{T1}^{(e)} \\ F_{T2}^{(e)} \end{Bmatrix}$$

Quadratic Element:

$$[K^{(e)}] = \frac{EA}{3L} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix} \qquad \{R\} = \frac{p_o L}{6} \left\{ \begin{array}{c} 1 \\ 4 \\ 1 \end{array} \right\} + \frac{p_{To} L}{6} \left\{ \begin{array}{c} 1 \\ 4 \\ 1 \end{array} \right\} + \left\{ \begin{array}{c} F_1^{(e)} \\ 0 \\ F_3^{(e)} \end{array} \right\} + \left\{ \begin{array}{c} F_{T1}^{(e)} \\ 0 \\ F_{T3}^{(e)} \end{array} \right\}$$

Class Problem 2

Heat q_o is being added at point B at a constant rate as shown in Fig. 3. Using two quadratic elements determine the displacement of node B, reaction force at A and the axial stress just before B in terms of E, A, α , k, L, and q_o . Assume that the entire bar was at zero temperature and the ends of the bars are maintained at zero temperature.

Home Problem 2

Heat $3q_o$ is being added at point B and q_o is being taken out at a constant rate at point C as shown in Fig. 4. Using three linear elements determine the displacements of points B and C, the reaction force at A, and the axial stress just before B in terms of E, A, α , k, L, and q_o . Assume that the entire bar was at zero temperature and the ends of the bars are maintained at zero temperature.

ANS:
$$u_B = \frac{5\alpha q_o L^2}{18k}$$
 $u_C = \frac{7\alpha q_o L^2}{18k}$ $R_A = \frac{5EA\alpha q_o L}{9k}$

2-D Steady State Thermal Analysis

Differential Equation:
$$k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) = -q_v \text{ or } k \nabla^2 T = -q_v$$

Functional (Stored Heat):

$$U_{T} = \iint_{A} k \left[\left(\frac{\partial T}{\partial x} \right)^{2} + \left(\frac{\partial T}{\partial y} \right)^{2} \right] t dx dy$$

where t= thickness of the body.

$$\mathbf{U}_{\mathrm{T}} = \iint_{\mathbf{A}} \left\{ \frac{\partial \mathbf{T}}{\partial \mathbf{x}} \right\}^{\mathrm{T}} [\mathbf{k}] \left\{ \frac{\partial \mathbf{T}}{\partial \mathbf{x}} \right\} t d\mathbf{x} d\mathbf{y}$$

Isotropic material: [k] = k ---scaler quantity.

Element Approximation:

$$T(x) = \sum_{i=1}^{n} T_{i}^{(e)} f_{i}(x, y) = \begin{bmatrix} f_{1} & f_{2} & \dots & f_{n} \end{bmatrix} \begin{Bmatrix} T_{1}^{(e)} \\ T_{2}^{(e)} \\ \end{bmatrix}$$

f_i(x,y) are Lagrange Polynomials.

$$\begin{cases} \frac{\partial T}{\partial x} \\ \frac{\partial T}{\partial y} \end{cases} = \begin{bmatrix} \frac{\partial f_1}{\partial x} \frac{\partial f_2}{\partial x} \frac{\partial f_3}{\partial x} & \cdots & \cdots & \frac{\partial f_n}{\partial x} \\ \frac{\partial f_1}{\partial y} \frac{\partial f_2}{\partial y} \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial y} & \cdots & \cdots & \frac{\partial f_n}{\partial y} \end{bmatrix} \begin{cases} T_1^{(e)} \\ T_2^{(e)} \\ T_n^{(e)} \end{cases} = [B^{(e)}] \{d^{(e)}\}$$

$$U_{T} = \iint_{A} \frac{1}{2} \{d^{(e)}\}^{T} [B^{(e)}]^{T} [k^{(e)}] [B^{(e)}] \{d^{(e)}\} t dx dy = \frac{1}{2} \{d^{(e)}\}^{T} [K_{T}^{(e)}] \{d^{(e)}\}$$

Element Conductivity Matrix

$$[K_T^{(e)}] = \iint_A [B^{(e)}]^T [k^{(e)}] [B^{(e)}] t dx dy$$

Heat Conduction Boundary Conditions

$$-k\frac{\partial T}{\partial n} \; = \; -k\bigg(\!\frac{\partial T}{\partial x}n_x^{} + \frac{\partial T}{\partial y}n_y^{}\!\bigg) \; = \; q_n^{}$$

n= direction of the unit normal to the boundary. where,

 n_x , n_y = direction cosines of the unit normal to the boundary.

 q_n = specified heat flow in the n-direction on the boundary.

Right Hand Side Vector:

$$\{R^{(e)}\} = \int\limits_{A^{(e)}} q_v \left\{ \begin{array}{c} f_1 \\ f_2 \\ \cdot \\ \cdot \\ f_n \end{array} \right\} \ t dx dy + \int\limits_{\Gamma^{(e)}} q_n \left\{ \begin{array}{c} f_1 \\ f_2 \\ \cdot \\ \cdot \\ f_n \end{array} \right\} \ t ds$$

where, $\Gamma^{(e)}$ = the boundary of the element.

s= tangential coordinate along the element boundary.

Convection Boundary Conditions

$$-k\frac{\partial T}{\partial n} = h(T_f - T)$$

where,

h = convection heat transfer coefficients T_f = Temperature of the surrounding fluid

h depends upon many factors: velocity of fluid, viscosity of fluid, density of fluid, and other properties of fluid. It also depends upon the surface roughness and surface geometry.

Addition to Element Matrix:

$$K_{ij}^{(e)} = \int_{\Gamma^{(e)}} h^{(e)} f_i f_j t ds$$

Addition to Element Right Hand Side Vector: $R_i^{(e)} = \int_{r_i^{(e)}} h^{(e)} f_i T_f t ds$

$$R_i^{(e)} = \int_{\Gamma^{(e)}} h^{(e)} f_i T_f t ds$$

• If $\Gamma^{(e)}$ is an element boundary in the interior, then there is no convection there and hence no addition to the matrix or the element RHS vector.

Radiation Boundary Condition:

Heat radiated is proportional to the difference in the fourth power of temperature between the radiating bodies.

$$-k\frac{\partial T}{\partial n} = B_C(T_r^4 - T^4)$$

where, B_C is the proportionality constant.

 T_r is the temperature of the other radiating body.

Temperatures T_r and T are in absolute degrees i.e., ${}^{o}K$.

- ullet For two infinite parallel black bodies (planes) it is called the Boltzmann constant. For regular bodies B_C depends upon the emissivity of the bodies, the geometry and other factors.
- Radiation boundary conditions lead to non-linear thermal problem. A general approach is:

$$-k\frac{\partial T}{\partial n} = B_C(T_r^2 + T^2)(T_r + T)(T_r - T) = h_r(T_r - T)$$

In the iteration process, at each step treat the radiation boundary condition like a convection term with coefficient dependent upon the temperature at a particular step.