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Storage and Solution Techniques

Banded Matrix

« Each nodc has two degrees of freedom (u and v)
* Element matrix1s 6 x 6

. CST CST CST
Half Band Width =N]%> s i _—
1 3 > 7

1 (2 (3 |4 |5 |6 V7 |8 |9 |1011 (12|13 |14 |15 |16
1 X X X X X o 0 0 0 0 0 0 0 0 A
2 X x x x x |0 o o0 o o 0 0 0 0
3 X X X X X |x x o o0 o0 o0 0 0 0
4 X x| x x x|x x]|0 o o0 0 0o 0 0
5 X X | x x X |x x| X X o 0 0 0 0
6 X X | x x|x x x| x x| 0 o 0 0 0
7 U = x|= = %l = x| = = 0o 0 O
8 0 X X |x x|x x x| x x |0 0 0
9 0 0 0l x x| x X x|l x x|[x X 0 N
wypo o 0 X x| x x| x X x| x x|0
mgo o 0 0 0l x x| x X X | X X| X X
20 0 0O 0 0 ¥ xl|lx x| x X x| x x
B3go0 o0 0 0 0O 0 X X | x X X | x X
440 0o 0 0 O 0 O X x| x x x X X
50 o0 0 0 0O O 0 0 0] x x x X X
lego o 0O 0 O 0O 0O 0 0 X X X X X

* Only the upper banded form of the global stiffness matrix is stored in a
rectangular matrix of size NxNg
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Banded Matrix
Z/E 6 7 8
CST CST CST
CST CST CST
1 2 3 4
Half Band Width =Ny

1 |2 (3 |4 |5 |6 (7 |8 |9 |10(11 (12|13 |14 |15 |16
1 x x x 0 0 0 0 x x 0o 0 0 0 0 A
2 X x x 0 0 0 0 x x|[0 o o0 0 0
3 X X x x x 0 0 x x|x X 0o 0 0
4 X X | x x x 0 0 0 0fx x| 0O 0 0
5 0 0 ]x x x x x 0 00 0] x x 0
6 0 0| x x| X x x 0 010 0 x x| 0O
7 O 010 0] x x x x x |0 0l x x| x «x
8 0 010 0] x x| X x x [0 0] x x| x X
9 x x|x x |0 0] 0 0 x| x x| 0 0] 0 O N
wgx x|x x| 0 010 0 x x x| 0 0] 0 0
11 0lx x|x x| 0 0 x X x| x x| 0 O
124 0 x x| x x|0 0 x x X x x| 0 O
30 0 0l x x| x x 0 0 x X x| x x
440 0 0 x x| x x 0 0 x x X X X
50 0 0 0 0l x x 0 0 0 0 x X X
i6go 0 0 0 0 x x 0 0 0 0 x x X _L

® The bandwidth is solely dictated by the difference between the highest and
the lowest node number on the elements.
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Equation Solving [K]{d}={R}

Direct Methods: Matrix inversion, Gauss Elimination, Gauss-Jordan, Cholesky’s
Method.
Iterative Methods: Jacobi, Gauss-Seidel, Successive Overrelaxation.

Gauss Elimination

» A lower triangular matrix has zero coefficients above the diagonal [L]
» A upper triangular matrix has zero coefficients below the diagonal [U]

Any matrix [K] can be decomposed as [K]=[LL][U]. The algebraic equations
become: [L][U]{d}={R}. If we substitute [U]{d}={x} we obtain [L]{x}={R}. The
solution is obtained in two steps:

1. Forward substitution: Solve for {x} from: |[L]{x}={R}
2. Backward substitution: Solve for {d} from: [U]{d}={x}

« In FEM the stiffness matrix is symmetric and positive definite. The

decomposition is done using Cholesky’s method to obtain [U]=[L]".
» Forward substitution is dong in increasing node number order and

backward substitution 1s done in decreasing node number order.
Pros and Cons

« Direct methods are better for multiple load vectors. The computation

; ; : 2
time 1s proportional to NN

» Computation times for iterative methods depend upon the starting
guess solution. In time dependent problems that are solved in small
time steps the initial guess vector 1s known from previous time step.
Non-linear problems which are solved as linear problems iteratively
also usc less time 1n 1terative methods.
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Large Systems

Skyline storage scheme

The stiffness matrix of very large structures may have mostly zero terms, even
inside the band width. Such matrices are called sparse matrices.

H;= The height of the column above the diagonal of the i row beyond
which there 1s no non-zero term.
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Skyline algorithms are used for sparse matrices.
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Wavefront (Frontal) equation solver:

» Assembly and equation solving proceeds simultancously.

» Computation of coefficients in a stiffness matrix and load vector 1s
complete only when contribution of all elements that share the node
have been added.

» A complete cocfficient 1s can be processed in the solution process.

» Wavefront number is a measure of number of coefficients being
manipulated in the solution process at a given step.

Substructure (Matrix partitioning)

[A] i Bl W} __ R}

Algebraic equations can be written as:

—'_ - I .
€11 o1 {4 (R’
| —
The two sets of matrix equations can be solved as shown below.

[Al{d,} +[Bl{d,} = {R,} or {d;} = [A]" ({R,}-[B]{d,})

[C]{d,} +[D]{d,} = {R,}
[CIIAT ' ({R,}-[B]{d,}) +[D]{d,} = {R,}

([D1-[CIIAL_[BD){dy} = {(Ry}~[CIIAT" {R;}
[KS]{dz} - {RS}

In substructuring {d,} are the nodal displacements on the interface of two substruc-

tures and {d, }are the displacements of nodes on either of the substructure.

* Substructuring 1s used for large structures. Each substructure can be
used as a superclement if a substructure repeats in a structure.

» Substructuring could be used for creating meshes with different densi-
ties either for creating original mesh or for mesh refinements.

* In non-linear analysis such as in elastic-plastic analysis. The plastic
zone 18 made a part of a substructure.
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Isoparametric Elements

* Coordinates of the geometry 1s approximated using the same interpolation func-
tions as used for displacements.

K Y
Master element in Retingl wlanmt
natural coordinates -
J X
I AM AY
3 4

Master element in
natural coordinates

b-é Actual element
e

X

n n m m
u= YNGEWET v = INGEYT x = INGEDY Y = TNG Y,
i=1 i=1 i=1 o |
1. Subparametric elements m <n
2. Isoparametric elements m = n---Most common
3. Superparametric elements m > n---Rarely 1f ever used.

ON. ON:
du _ 6u8x+é‘u6y cu Za—lxi Za_lyi ou éli ou
08 Ox0E Oyos 2L N P 5 =1 . a5 e [J]i1 o
du _ Oudx é‘u@y ou i N 6_u al .
i=1 i=1
[T]
| N _ N
dx = Z@XidéJr Z%Xidn
i=1 = 1 d d
{dx} _ [J]T{di} dxdy = |J]d&dn
[ DN o, ’ !
dy = Z%B/i dg + Z%Yi dn

11

K] = (1B [EIBIddy) = [ [[BI [EIBIt(dg)dn)

-1-1
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Numerical Integration

1 n

I= [FE)de = ¥ wiF(E)
-1 1=1
® w; are called the weights and &; are called the base points. Functions are

evaluated at base points.
Trapezoidal rule: (n=2, linear approximation of F(&)

AF©)
1
I [FE)dE - 2R +F(E) ’£>f
e ) :‘<: - :>:
R ! ¢
1= So=-1

Simpson’s rule (n=3, quadratic approximation of F(&)):

1

h

I= [F(&)dg = S(F(E)) + 4F(&y) + F(Ey)

=]
Newton-Cotes quadrature: Equally spaced base pomts. For (n-1 )th order polynomial
1s integrated exactly by choosing n base points. Note there are n parameters
(weights) that can be adjusted.

Gauss quadrature (Gauss-Legendre quadrature)
Make base pomts also variables, thus there are 2n parameters, hence a polynomial

of order (2n-1) will be integrated exactly. Using this idea the weights and base
points are determined. It turns out that the base points are the roots of Legendre

Polynomials.
Table 1: Weights and Gauss (base) points

Base points &; n Weights w;
0.0 One point formula w=2.0
+(1/J3) Two point formula wi=wy= 1.0
0.0 Three point formula wi=(8/9)
+40.6 wo= w3= (5/9)
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2-D Numerical interrogation

1 1 n n

[= [ [FEm@@dn = 3 Y wwF(E,n)
—1-1 1=11=1

Class Problem J

Evaluate the integral below using 1,2, and 3 points Gauss Quadrature

Homework Problem

Evaluate the integral below using 1,2, and 3 points Gauss Quadrature
11
2
1
I = jj( +é2)dgd1']

ed 2+
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Class Problem: Evaluate the integral below using 1,2, and 3 points Gauss

11

2
Quadrature T = _[ J‘(g+—g+22)dgdn

1 1+m1

B

w P,

2
Analytical value: 1 = ( +§2-+2§) atan(n) = 7.3303

-1

-1

Table 2: Class Problem Solution

& M; F(E;, ;) Wi b Wiij(E_,is m;)

"One pomnt Gauss Quadrature
0 0 2 2 2 8
Two point Gauss Quadrature
-0.5774 -0.5774 1.3170 1.0000 1.0000 1.3170
0.5774 -0.5774 2.1830 1.0000 1.0000 2.1830
-0.5774 0.5774 1.3170 1.0000 1.0000 1.3170
0.5774 0.5774 2.1830 1.0000 1.0000 2.1830

Total I= 7.0000

Three point Gauss Quadrature
-0.7746 -0.7746 1.1409 0.5556 0.5556 0.3521
0.0000 -0.7746 1.2500 0.8889 0.5556 0.6173
0.7746 -0.7746 2.1091 0.5556 0.5556 0.6510
-0.7746 0.0000 1.8254 0.5556 0.8889 0.9014
0.0000 0.0000 2.0000 0.8889 0.8889 1.5802
0.7746 0.0000 3.3746 0.5556 0.8889 1.6665
-0.7746 0.7746 1.1409 0.5556 0.5556 0.3521
0.0000 0.7746 1.2500 0.8889 0.5556 0.6173
0.7746 0.7746 2.1091 0.5556 0.5556 0.6510
Total I= 7.3889

® More Gauss points increases the accuracy of integration but may make the
element more stiff thus decreasing the FEM accuracy.

® Two few Gauss points may cause instabilities resulting in singular stiffness
matrices.

® Evaluation of stresses at Gauss points 1s usually more accurate than at
nodes.
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FEM Convergence

1. Does the FEM solution converge as mesh is refined?

Does the FEM solution converge rapidly?

3. Does the FEM solution converge to the right solution?

® Minimum potential energy theorem guarantees convergence provided the
set of kinematically admissible functions are complete and independent.

® Internal nodes in an element are needed to ensure the set of interpolation
functions are complete.

® Internal nodes in an element do not play as significant a role as nodes on
the boundaries of an element and very often are eliminated to accelerate
convergence. Need a test to ensure the FEM solution will still converge.

Patch Test

A numerical test designed to check if a mesh made from a specific type of element
will converge as it 1s refined.

Create a patch (mesh) from the element that is to be tested. Must have at least
one node 1n the interior of the patch.

Apply minimum boundary conditions to eliminate rigid body mode.

Apply loading to produce constant stress inside the patch.

The test 1s successtul if it displays:

A constant strain inside the patch.

Deformation on the element boundary of element satisfies compatibility 1.e.,
continuity requirements—no holes for plane problems and no holes and cor-
ners for plate problems.

. Rigid body motion without strain.

Constant stress=c,, =

”/Q’

2 . o F/2
ia
P F'=cat
ia
\ o F/2

® Tt 1s user’s responsibility to ensure the solution converges to the right
solution at a satisfactory convergence rate.
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Symmetry

® Symmetry can be used to reduce the model size i the analysis.
Symmetry about a plane (axis) requires:
1. Symmetry of geometry.

2. Symmetry in loading

3. Symmetry of material properties.
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