REVIEW OF MECHANICS OF MATERIALS

1.0 Stress at a Point

1. Stress is an internal quantity.
. AF i 2. Stress has units of force per unit area.

G i = lim H 3. Stress at a point needs a magnitude and two directions to specify it (i.e. stress 1s a second-order tensor).
diredtion:dit / AA; >0 i 4. The sign of a stress component is determined from the direction of the internal force and the direction of the out-
sitward nanmial g e difcetisiar e ward normal to the imaginary cut surfgce.
imaginary cut surface. internal force. 5. Shear stress components are symmetric

2.0 Strain

Measure of relative movement of two points on the body. (deformation)

1. Elongations are positive normal strains. Decrease from right angle results in positive shear strains.

2. Small strain (g < 0.01) can be calculated using just the deformation in the original direction of the line.
3. Small strain results in a linear theory

o e - _& L _w _ ., o v _., v ow _. _dw_
Engineering Strain *xx ~ 7 vy 3y 2z g ey T Yyx By ox vz " Tzy T 32 dy Yoax Tz T3k a
4. tensor normal strains = engineering normal strains and tensor shear strains = (engineering shear strains)/ 2
3.0 Generalized Hooke’s Law
Assuming no temperature change, we have the following:
For isotropic materials . B
P { Cox Ty O Generalized |e; ¥y 0
G T Plane Stre o| Hooke’s Law|v.. = 0
g, = =X_Lic 4g_)+aAT v, = =¥ Tyx Oyy 100RC 5 LAR yx By
xx B E ¥y zZ e 0 0 0 0 0 e,=-2(a,,+06,,)
< v Tz L E ¥y
g :—Hf—(s +a__yt+oAT ¥ = 5 L2
¥y E E' xXx ZZ YZ G
a T Generalized T,
zZ ¥ ZX G T 0
e = + + =
S22 = F EOxx T Oyy) TOAT T T g &x Yy 0| Hookes Law TXX ny 0
. g of gl ¥® W
- _E Plane Straim——® |’y Fy 0 5 il
( )
2(1+v) 0 0 0 L zz xx Uy

4.0 Stress Transformation
+  Stress transformation equations relate stresses at a point in different coordinate systems.
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where, Oyy, Gy, and Ty are the stresses in x-y-z coordinate system, oy, Oy, and Ty, are the stresses in n-t-z coordmate system, 8 1s measured from the x-axis n the counter-clock-
wise direction to the n-direction.

»  The value of stresses on a plane through a point are unique and depend upon the orientation of the plane only and not how its orientation 1s described or measured.

+  Planes on which the shear stresses are zero are called the principal planes.

*  Principal planes are orthogonal.

*  The normal direction to the principal planes is referred to as the principal direction or the principal axis.

+  The angles the principal axis makes with the global coordinate system are called the principal angles.

*  Normal stress on a principal plane is called principal stress.
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+  The greatest principal stress is called principal stress one.

+  Principal stresses are the maximum and mimimum normal stresses at a point.

+  The maximum shear stress on a plane that can be obtained by rotating about the z axis is called the in-plane maximum shear stress.
+  The maximum shear stress at a point is the absolute maximum shear stress that is on any plane passing through the point.

+  Maximum in-plane shear stress exists on a two plane which are at 45° to the principal planes.
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where, 6, is the angle to either principal plane one or two, o1 and o; are the principal stresses, 1, is the n-plane maximum shear stress.

Flane Stress

i =g — 0 . = max(61762 G; 93 ‘73*51)
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+  Atapoint there are always three principal stresses.
5.0 Failure Theories
Maximum shear stress theory: |max(6, —6,, 6,~ 65,6, — 6, )| £ 6, 4——-Ductile materials

: 1 2 2 2 : .

Maximum octahedral shear stress: o, = _J(‘51 —6,) T (0, -03) +(063-0,)" <0, 4---Ductile materials

2

G.on 15 called von-Mises stress.

Maximum normal stress theory |max(6,, 7,, 65)| < &,y ---Brittle materials

ke 2

Modified Mohr’s theory: < 1 ---Brittle materials with different tensile and compressive strength.
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6.0 Strain Transformation

+  Strain transformation equations relate strains at a point in different coordinate systems.
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where, 8, 1s the angle to either principal plane one or two, £ and € are the principal stresses, v, 1s the in-plane maximum shear stress.
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+  The principal directions for stresses and strains is same for isotropic materials.
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+  (eneralized Hooke’s Law in principal coordinates: &, = [6, —v(c;+a,)]/E
[6;—v(o, +0,)]/E

E;
7.0 Pressure Vessels
Stress Approximation
1. Free Surface
2. Thin Bodies.

3. Axi-symmetric Bodies. Axial stress: 5 —

XX

Thin eylindrical pressure vessels

8.0 Logic in Structural Mechanics

[a, —v(o, +0,)]/E

Hoop stress: _ pR
P Tag :
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Thin spherical pressure vessels
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Torsion of thin tubes



Structural Analysis
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9.0 Buckling:

Bending due to compressive axial forces 1s called buckling.

It is sudden and catastrophic.

Buckling occurs about the axis of minimum area moment of inertia.
2

n El
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Slenderness ratio is defined as L/r where L is length of column and r is radius of gyration.

Euler Buckling Load P, can be calculated from:P . =

10.0 Stress Concentration
Sudden changes in geometry, loading, and material properties cause a concentration of stresses. The impact of the stress raisers (causing the stress concentration) dies out rapidly
with distance as per Saint Venant’s principle.

_ Maximum Stress
Nominal Stress
The formulas of mechanics of materials give us the nominal stress. Use charts in handbooks to obtain K, and find the predicted maximum stress.

Stress concentration factor: K,
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11.0 Superposition
Applicable only to linear systems.

Example 1:
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