M. Vable Axi-symmetric, plates and shells, 3-D

Polar Coordinates

The small strain-displacement equations in polar coordinates are:

g, = o, Sag = X+ 19% g = 0
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The Generalized Hooke’s Law can be written as:
2G T
G = (172\,)[(1_")8rr+"899+"8zz] Yo = ée
2G T B E
Cag — (172\})[(1*V)899+VSH+VSZZ] Yoz — —= - 2(1+V)
2G T20
B = (1_ZV)[(l—V)SZZ+V899+V8rr] Vo0 = é

Axi-symmetric problems

For a problem to be axi-symmetric the following requirements must be met:
1. The geometry must be symmetric about an axis of revolution.
2. The material properties must be symmetric about the axis of revolution.

3. The loading and boundary conditions must be symmetric about the axis of
revolution.

Implications: Displacements and stresses must be independent of angular location
(0) and there can be no twist (vg must be zero).

T T
= - &

Ju u ow
€ T a €ap 7z E Tre = 0 Tz = 5 7 Tz = 0

Expanding Educational Horizons 1



M. Vable Axi-symmetric, plates and shells, 3-D

® Note radial displacement causes tangential normal strain.

Gag Opr

Smooth

o
Pressurized Surface

3-node Triangular Element
® Displacements are linear in r and z directions

U, = agtartaz w:b0+b1r+b22
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M. Vable

Axi-symmetric, plates and shells, 3-D
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Tangential normal strain is not constant

® You can use any 2-D element, but will need to post-process the results of
displacements and strains to get g4y, 6,,, Ggg, G,
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M. Vable Axi-symmetric, plates and shells, 3-D

Thin Plate

A thin two-dimensional structural element that is subjected to bending loads.

® Plane stress 1n z-direction

Mid-surface
is neutral surface

® Mid-plane 1s initially flat

® Plane sections before deformation remain plane after deformation. (displacements
uand v are linear i z, 1.e., through the thickness.)

Kirchhoff Plate Theory

® Plane sections initially perpendicular to the mid-surface remains perpendicular
after deformationy,, ~ 0 ¥y, ~ 0 () --Shearing action is small)

u = —Za—w N = —Za_w
ox oy
w 1s the displacement in the z-direction and 1s only a function of x and y. u and v are

displacements 1n x and y direction.

For small strain:
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M. Vable Axi-symmetric, plates and shells, 3-D

Internal Forces and Moments:

t/2 t/2 t/2
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-t/2 -t/2

The moments and shear forces have units of moments and forces per unit length.

Moment Curvature Formulas:

2 2 2 2 2
M, = —D[a_‘jwa_‘j} M, - _D[a_‘j+va_‘§] My, = -D(1-v)2%
Et’

where, D = >
12(1 - v°)

1s called the plate rigidity.

Differential Equation: Bi-harmonic Equation
4 4 4
6\N4_6\N +_8W

L2 Z R pxy) or Viw = VIV = py(x,y)
ox  oOx'dy” 0Oy

2 2
where, v’ = iz - iz 1s the harmonic operator.
ox~ 0Oy
® A kinematically admissible deflection w requires continuity of w, ' By at all
points.
) 2 82
® At a corner the requirement that OW__ 9W _results in the condition that &7
0xdy  O0yox oxdy

be continuous at the corner.
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M. Vable Axi-symmetric, plates and shells, 3-D

® Rectangular element: Each node has four degrees of freedom (dof) per node:

2
w 2w o

T ox’ Oy’ Oxoy
axis. Hermite polynomials are used for interpolation functions.

Can be used only with rectangular sides parallel to x and y

A
16 dof
-
2 2
® Toensure 2W_ = 9% _ 4t any orientation, requires all second derivatives to be
Oxdy  0yox

continuous at nodes.

® Triangular element: Each corner node has six degrees of freedom per node

o o o
ow  ow dw Odw Ow

W, &5 @ ’ aX25 ayz Saxay

and the middle node on each side has one degree

of freedom g—: where the n direction 1s the normal direction to the side.

® The continuity of second derivatives implies that moments must be continuous. If
there 1s a line load of moment then this will leads to problems.

® Non-conforming elements do not satisfy all continuity requirements. Non-
conforming elements are used in plate analysis.

Mindlin Plate Theory

® Mindlin plate theory differs from Kirchhoff plate theory in the same way as
Timoshenko’s beam theory differs from classical beam theory.

® The assumption of plane sections initially perpendicular to the mid-surface

remains perpendicular after deformation 1s dropped and transverse shear is
accounted.

Displacements:

u = zey R I

where, 6, and 6, are the rotation about x and y axis, respectively, of a line that was

mnitially perpendicular to the mid surface.
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M. Vable Axi-symmetric, plates and shells, 3-D

Strains
_ou _ 9y _ov 99 _u v _ (%y 59x)
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® Note 0, = —(g—‘g and 6, = g_w reduces Mindlin’s theory to Kirchhoft’s theory.
¥

® Kinematically admissibility requires that w, 6., 6, must be continuous. Can use
Lagrange polynomial for interpolation functions.
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M. Vable Axi-symmetric, plates and shells, 3-D

Thin Shell Elements

® Curved plate: Combination of membrane (2-D in-plane) and plate bending.
® The elements are similar to plate elements but requires definition of curved
geometry.

® FEM codes usually have shallow thin shell elements which can be used to also
simulate plate elements.
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M. Vable Axi-symmetric, plates and shells, 3-D

Three Dimensional Elements

Tetrahedron
® Displacements are linear in x and y, resulting in constant strains.,

Constant Strain
u=astaxtaytasz

v =bytbx+b,y+b,z

W = ¢y TC X T Cyy T 32
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M. Vable Axi-symmetric, plates and shells, 3-D

Hexahedron (Brick) Element

Tri-linear
5 g
7 1
N, = s(1-&)(1-n)(1-0)
6 | s
- N, = 2(+E)T+m)(1-9)

¢ 20 node quadratic
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& @ ;

Iso-parametric:
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