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Generalized Hooke’s law

Strain energy density: U =

FEM in two-dimension
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M. Vable 2-DFEM

Strain-Displacement
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Displacements approximating:
n n

u(x) = Z ui(e)fi(x, y) v(x) = Z Vi(e)fi(XaY)
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Define the nodal displacement vector as: {d} = < Vge) .
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» Matrix |B] is called strain displacement matrix

Uy = 2(d}' By [E1(B} (d}

Strain Energy:U(e) = IUge)dV

v

- T (e
jz{d}T{B}T[E]{B}{d}dv - 24y K1)

Element stiffness matrix:[K'“'] = [[B]'[E][B] dV

\Y

Variation in potential energy: SQ(e) = {Sd}T([K(e)]{d} — {Re})
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Some Jargon
1-D Heat Conduction:

;
d_2= 0 0<x<L
dx
—kZ_T =
xeO
Tlx:L B TO

Beam Bending

Overview of approximate methods

X
t L >

Differential Equation

Natural Boundary Condition

Essential Boundary Condition

Expanding Educational Horizons

8-4




M. Vable 2-DFEM
2
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Approximation of boundary value problem

Differential Equation

Natural Boundary Condition

Essential Boundary Condition

) j set of approximating functions

set of ¢; is complete and independent.

—— Error in Differential Fquation

—— Error in Natural Boundary Condition

—FError in Essential Boundary Condition
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Commonality and Differences in
Approximate Methods

Commonalities

* Produce a set of algebraic equations in the unknown constants c;.
* Choose ¢; to set one (or two) of the errors ¢4, ¢,,, or ¢, to zero

®* Minimize the remaining crror(s).
Differences

® Which error 1s set to zero
Domain Methods: ¢, =0 or ¢, =0

Boundary Methods: e4=0
® Error Minimizing Proccss
Independence of ¢;

®* No ¢; can be obtained from a lincar combination of other ¢;’s in
the set.

* If the set of functions ¢; are not ndependent then the equations in
the matrix will not be independent and the matrix will be singular.

Completeness of ¢,

* In a series sequence no term should be skipped.

® If a sct 1s not complete then the solution may not converge for
some problems.
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Error Minimization

Weighted Residue

iji(d)eddxdy + Iwi(e)eeds + I qfi(n)ends = 0
Q2 I i

c n

FEM-Stiffness version: ¢, = 0

iji(d)eddxdy + I wi(n)ends = 0
Q I
FEM-Flexibility version: ¢, =0

iji(d)eddxdy+ Iwi(e)eeds =0
Q r

5

BEM: e ;=0

I wi(n)ends + Iwi(e)eeds = 0
I, I
FEM: Discretization process is on domain of the entire body QO

BEM: Discretization process 1s on the boundary of the body I

» In FEM stiffness matrix the equilibrium equation on stresses (differen-
tial equations) and boundary conditions on stresses (natural boundary
conditions) ar¢ approximately satisfied.

» In FEM flexibility matrix the compatibility equation on stresses (dif-
ferential equations) and boundary conditions on displacements (essen-
tial boundary conditions) are approximately satisfied.
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Constant Strain Triangle (CST)

® Displacements are linear in x and v, resulting in constant strains.

u = ajta;xta,y v =bytbx+b,y
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Pascal’s Triangle

® Used for determining a complete set of polynomial terms in two
dimensions.

® Greater the degree of freedom, less stiff will be element.

* Interpolation functions are easier to develop with arca
coordinates.
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Natural Coordinates

® Coordinates which vary between 0 and 1 or -1 and 1.

® Natural coordinates and non-dimensional coordinates.
1-d Coordinates

X
" O ®
X; Nodel Node 2
X2
_ X — X2 B X — Xl
- o[
Possibility 1 Possibility 2
—k §:|1 E-’:|_1 _"’é t=1
@ ® @ , ‘l)
Node 1 Node 2 Node 1 .
Ehal = (=) L,(8) = (1-8)/2
Ly(&) = & L&) = (1+&)/2

2-D Triangular elements (Area Coordinates)
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Linear Strain Triangle
5e K

I

L -172) |
L T (hars2) I(LI_E)
LILJ

N, = = 4L.L,

(1/2)(1/2)
Homework Problem: Write cubic interpolation functions using arca coor-
dinates for nodes 1,2 and 10.
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Bi-Linear Quadrilateral

u = ajta;xta,y+axy v = bytb;x+b,y tbsxy
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Interpolation functions in natural coordinates

£ = x/a n =yv/b
Ny = 4(1-91-m) N, = {(1+E) =)

Ny = 31-8)(1+n) Ny = A+E)(1+n)

ox 0 ox adk by @nody bom
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Other Quadrilaterals

Complete quadratic

Ay
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® The stiffness (row and column) related to node 5 1s known at
clement level and as rows and columns of other elements do not

add to 1it.
Quadratic element often used in practice:
Ay
a a

1<t =< =

% v ) @
b

X

e 4 5. X -
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¢! é oV

* When internal nodes are eliminated care has to be exercised to
ensure the mesh from such clements will converge.
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Mechanical Loads

There are three types of mechanical loads

1. Concentrated Forces or Moments

» The loads must be applied at nodes when making the mesh.

» Theorctically the stresses are infinite at the point of application, hence
in the neighborhood of concentrated load a large stress gradient can be
anticipated.

2. Tractions

» Forces that act on the bounding surfaces.

SX = o N T Txyny Sy = Tyxnx + nyny

n, and ny are the direction cosines of the unit normal

» Tractions has units of force per unit arca and are distributed forces.

» Usually the tractions are specified in local normal and tangential coor-
dinates.

» These distributed forces must be converted to nodal forces.

In two dimensions the bounding surface is a curve. Distributed forces can

be converted to nodal forces as was done 1n 1-d axial and bending prob-
L

lems. (work equivalency)r; = J’p(x)fj(x) dx
0
P pL/2 pL/2 pL/6  2pL/3  pL/6

S S S

»

L Linear Lagrange Quadratic Lagrange

3. Body Forces

» Forces that act at cach and every point on the body:.
« (Gravity, magnetic, mertial are some examples.

» These forces must be converted to nodal forces.
(See section 3.9)
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