FEM in two-dimension

Strain energy density: $U_{o}=\frac{1}{2}\left[\sigma_{x x} \varepsilon_{x x}+\sigma_{y y} \varepsilon_{y y}+\tau_{x y} \gamma_{x y}\right]$
Define: $\{\tilde{\sigma}\}=\left\{\begin{array}{c}\sigma_{\mathrm{xx}} \\ \sigma_{\mathrm{yy}} \\ \tau_{\mathrm{xy}}\end{array}\right\} \quad\{\tilde{\varepsilon}\}=\left\{\begin{array}{l}\varepsilon_{\mathrm{xx}} \\ \varepsilon_{\mathrm{yy}} \\ \gamma_{\mathrm{xy}}\end{array}\right\} \quad \mathrm{U}_{\mathrm{o}}=\frac{1}{2}\{\tilde{\sigma}\}^{\mathrm{T}}\{\tilde{\varepsilon}\}$

Generalized Hooke's law

Plane stress (All stresses with subscript z are zero)
Plane strain (All strains with subscript z are zero)

$$
\begin{array}{c|c}
\begin{array}{c}
\text { Plane Stress } \\
\sigma_{\mathrm{xx}}=\mathrm{E} \frac{\left[\varepsilon_{\mathrm{xx}}+v \varepsilon_{\mathrm{yy}}\right]}{\left(1-v^{2}\right)} \\
\sigma_{\mathrm{yy}}=\mathrm{E} \frac{\left[\varepsilon_{\mathrm{yy}}+v \varepsilon_{\mathrm{xx}}\right]}{\left(1-v^{2}\right)}
\end{array} & \sigma_{\mathrm{xx}}=\mathrm{E} \frac{\left[(1-v) \varepsilon_{\mathrm{xx}}+v \varepsilon_{\mathrm{yy}}\right]}{(1+v)(1-2 v)} \\
\tau_{\mathrm{xy}}=\frac{\mathrm{E}}{2(1+v)} \gamma_{\mathrm{xy}} & \sigma_{\mathrm{yy}}=\mathrm{E} \frac{\left[(1-v) \varepsilon_{y y}+v \varepsilon_{\mathrm{xx}}\right]}{(1+v)(1-2 v)} \\
\tau_{\mathrm{xy}}=\frac{\mathrm{E}}{2(1+v)} \gamma_{\mathrm{xy}}
\end{array}
$$

Plane Stress
$[\tilde{E}]=\frac{\mathrm{E}}{\left(1-v^{2}\right)}\left[\begin{array}{llc}1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{(1-v)}{2}\end{array}\right]$
$[\tilde{E}]=\frac{E}{(1-2 v)(1+v)}\left[\begin{array}{ccc}(1-v) & v & 0 \\ v & (1-v) & 0 \\ 0 & 0 & \frac{(1-2 v)}{2}\end{array}\right]$
$\{\tilde{\sigma}\}=[\tilde{\mathrm{E}}]\{\tilde{\varepsilon}\} \rightarrow[\tilde{\mathrm{E}}]=[\tilde{\mathrm{E}}]{ }^{\mathrm{T}}$
$v \longleftrightarrow v /(1-v)$
$\mathrm{U}_{\mathrm{o}}=\frac{1}{2}\{\tilde{\sigma}\}^{\mathrm{T}}\{\tilde{\varepsilon}\}=\frac{1}{2}\{\tilde{\varepsilon}\}^{\mathrm{T}}[\tilde{\mathrm{E}}]^{\mathrm{T}}\{\tilde{\varepsilon}\}=\frac{1}{2}\{\tilde{\varepsilon}\}^{\mathrm{T}}[\tilde{\mathrm{E}}]\{\tilde{\varepsilon}\}$

Strain-Displacement

$$
\begin{array}{r}
\varepsilon_{x x}=\frac{\partial u}{\partial x} \quad \varepsilon_{y y}=\frac{\partial v}{\partial y} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
\{\varepsilon\}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\left\{\begin{array}{l}
u \\
v
\end{array}\right\}
\end{array}
$$

Displacements approximating:

$$
u(x)=\sum_{i=1}^{n} u_{i}^{(e)} f_{i}(x, y) \quad v(x)=\sum_{i=1}^{n} v_{i}^{(e)} f_{i}(x, y)
$$

$$
\left\{\begin{array}{c}
\mathrm{u} \\
\mathrm{v}
\end{array}\right\}=\left[\begin{array}{cccccccc}
\mathrm{f}_{1} & 0 & \mathrm{f}_{2} & 0 & \ldots & \ldots & \mathrm{f}_{\mathrm{n}} & 0 \\
0 & \mathrm{f}_{1} & 0 & \mathrm{f}_{2} & \ldots & \ldots & 0 & \mathrm{f}_{\mathrm{n}}
\end{array}\right]\{\mathrm{d}\}
$$

$$
\begin{aligned}
& \{\varepsilon\}=\left[\begin{array}{cc}
\frac{\partial}{\partial \mathrm{x}} & 0 \\
0 & \frac{\partial}{\partial \mathrm{y}} \\
\frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{x}}
\end{array}\right]\left[\begin{array}{ccccccc}
\mathrm{f}_{1} & 0 & \mathrm{f}_{2} & 0 & \ldots & \ldots & \mathrm{f}_{\mathrm{n}} \\
0 \\
0 & \mathrm{f}_{1} & 0 & \mathrm{f}_{2} & \ldots & \ldots & 0
\end{array}\right]\left\{\mathrm{f}_{\mathrm{n}}\right][\mathrm{d}\}=[\mathrm{B}]\{\mathrm{d}\} \\
& \text { [B] }=\left[\begin{array}{ccccccccc}
\frac{\partial f_{1}}{\partial x} & 0 & \frac{\partial f_{2}}{\partial x} & 0 & \ldots & \ldots & \frac{\partial f_{n}}{\partial x} & 0 \\
0 & \frac{\partial f_{1}}{\partial y} & 0 & \frac{\partial f_{2}}{\partial y} & \ldots & \ldots & 0 & \frac{\partial f_{n}}{\partial y} \\
\frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial x} & & & & \frac{\partial f_{n}}{\partial y} & \frac{\partial f_{n}}{\partial x}
\end{array}\right]
\end{aligned}
$$

- Matrix [B] is called strain-displacement matrix

$$
\mathrm{U}_{\mathrm{o}}^{(\mathrm{e})}=\frac{1}{2}\{\mathrm{~d}\}^{\mathrm{T}}\{\mathrm{~B}\}^{\mathrm{T}}[\tilde{\mathrm{E}}]\{\mathrm{B}\}\{\mathrm{d}\}
$$

Strain Energy: $U^{(e)}=\int_{V} U_{o}^{(e)} d V$

$$
\mathrm{U}^{(\mathrm{e})}=\int_{\mathrm{V}} \frac{1}{2}\{\mathrm{~d}\}^{\mathrm{T}}\{\mathrm{~B}\}^{\mathrm{T}}[\tilde{\mathrm{E}}]\{\mathrm{B}\}\{\mathrm{d}\} \mathrm{dV}=\frac{1}{2}\{\mathrm{~d}\}^{\mathrm{T}}\left[\mathrm{~K}^{(\mathrm{e})}\right]\{\mathrm{d}\}
$$

Element stiffness matrix: $\left[\mathrm{K}^{(\mathrm{e})}\right]=\int_{\mathrm{V}}[\mathrm{B}]^{\mathrm{T}}[\mathrm{E}][\mathrm{B}] \mathrm{dV}$
Variation in potential energy: $\delta \Omega^{(\mathrm{e})}=\{\delta \mathrm{d}\}^{\mathrm{T}}\left(\left[\mathrm{K}^{(\mathrm{e})}\right]\{\mathrm{d}\}-\left\{\mathrm{R}^{\mathrm{e}}\right\}\right)$

Overview of approximate methods

Some Jargon

1-D Heat Conduction:

$\frac{d^{2} T}{d x^{2}}=0 \quad 0 \leq \mathrm{x} \leq \mathrm{L}$

$-\left.k \frac{d T}{d x}\right|_{x=0}=0 \quad$ Natural Boundary Condition $\left.T\right|_{x=L}=T_{o} \quad$ Essential Boundary Condition

Beam Bending

$V=-\frac{d}{d \mathrm{x}}\left(\mathrm{EI} \frac{d^{2} \mathrm{v}}{d \mathrm{x}^{2}}\right)=\mathrm{P}$
$M=\mathrm{EI} \frac{d^{2} \mathrm{v}}{d \mathrm{x}^{2}}=0$
$\mathrm{v}(0)=0$
$\left.\frac{d \mathrm{v}}{d \mathrm{x}}\right|_{\mathrm{x}=0}=0 \quad \square$ Essential Boundary Condition

Approximation of boundary value problem

$$
\mathrm{D}_{\mathrm{e}} \mathrm{u}=\mathrm{g}_{\mathrm{e}} \text { on } \Gamma_{\mathrm{n}} \longrightarrow \text { Nifferential Equation } \quad \text { in } \Omega \longrightarrow \text { Essential Boundary Coundary Condition }
$$

$$
\begin{aligned}
& \text { n } \\
& u=\sum_{j=1} c_{j} \phi_{j} \\
& \phi_{\mathrm{j}} \text { set of approximating functions } \\
& \text { set of } \phi_{\mathrm{j}} \text { is complete and independent. } \\
& \text { n } \\
& \mathrm{e}_{\mathrm{d}}=\sum \mathrm{c}_{\mathrm{j}} \mathrm{~L} \phi_{\mathrm{j}}-\mathrm{f} \quad \text {-Error in Differential Equation } \\
& \mathrm{j}=1 \\
& \text { n } \\
& \mathrm{e}_{\mathrm{n}}=\sum_{\substack{\mathrm{j}=1 \\
\mathrm{n}}} \mathrm{c}_{\mathrm{j}} \mathrm{D}_{\mathrm{n}} \phi_{\mathrm{j}}-\mathrm{g}_{\mathrm{n}} \text {-Error in Natural Boundary Condition } \\
& \mathrm{e}_{\mathrm{e}}=\sum_{\mathrm{j}=1} \mathrm{c}_{\mathrm{j}} \mathrm{D}_{\mathrm{e}} \phi_{\mathrm{j}}-\mathrm{g}_{\mathrm{e}} \quad \text {-Error in Essential Boundary Condition }
\end{aligned}
$$

Commonality and Differences in Approximate Methods

Commonalities

- Produce a set of algebraic equations in the unknown constants c_{j}.
- Choose ϕ_{i} to set one (or two) of the errors $\mathrm{e}_{\mathrm{d}}, \mathrm{e}_{\mathrm{e}}$, or e_{n} to zero
- Minimize the remaining error(s).

Differences

- Which error is set to zero

Domain Methods: $\mathrm{e}_{\mathrm{e}}=0$ or $\mathrm{e}_{\mathrm{n}}=0$
Boundary Methods: $\mathrm{e}_{\mathrm{d}}=0$

- Error Minimizing Process

Independence of ϕ_{i}

- No ϕ_{i} can be obtained from a linear combination of other ϕ_{i} 's in the set.
- If the set of functions ϕ_{i} are not independent then the equations in the matrix will not be independent and the matrix will be singular.
Completeness of ϕ_{i}
- In a series sequence no term should be skipped.
- If a set is not complete then the solution may not converge for some problems.

Error Minimization

Weighted Residue

$$
\iint_{\Omega} \Psi_{\mathrm{i}}^{(\mathrm{d})} \mathrm{e}_{\mathrm{d}} \mathrm{dxdy}+\int_{\Gamma_{\mathrm{e}}} \Psi_{\mathrm{i}}^{(\mathrm{e})} \mathrm{e}_{\mathrm{e}} \mathrm{ds}+\int_{\Gamma_{\mathrm{n}}} \Psi_{\mathrm{i}}^{(\mathrm{n})} \mathrm{e}_{\mathrm{n}} \mathrm{ds}=0
$$

FEM-Stiffness version: $e_{e}=0$

$$
\iint_{\Omega} \psi_{i}^{(d)} e_{d} d x d y+\int_{\Gamma_{n}} \psi_{i}^{(n)} e_{n} d s=0
$$

FEM-Flexibility version: $\mathrm{e}_{\mathrm{n}}=0$

$$
\iint_{\Omega} \psi_{i}^{(d)} e_{d} d x d y+\int_{\Gamma_{e}} \Psi_{i}^{(e)} e_{e} d s=0
$$

BEM: $\mathrm{e}_{\mathrm{d}}=\mathbf{0}$

$$
\int_{\Gamma_{n}} \psi_{\mathrm{i}}^{(\mathrm{n})} \mathrm{e}_{\mathrm{n}} \mathrm{ds}+\int_{\Gamma_{\mathrm{e}}} \psi_{\mathrm{i}}^{(\mathrm{e})} \mathrm{e}_{\mathrm{e}} \mathrm{ds}=0
$$

FEM: Discretization process is on domain of the entire body Ω
BEM: Discretization process is on the boundary of the body Γ

- In FEM stiffness matrix the equilibrium equation on stresses (differential equations) and boundary conditions on stresses (natural boundary conditions) are approximately satisfied.
- In FEM flexibility matrix the compatibility equation on stresses (differential equations) and boundary conditions on displacements (essential boundary conditions) are approximately satisfied.

Constant Strain Triangle (CST)

- Displacements are linear in x and y , resulting in constant strains.

$$
\begin{gathered}
u=a_{0}+a_{1} x+a_{2} y \quad v=b_{0}+b_{1} x+b_{2} y \\
\varepsilon_{x x}=\frac{\partial u}{\partial x}=a_{1} \quad \varepsilon_{y y}=\frac{\partial v}{\partial y}=b_{2} \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=a_{2}+b_{1}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\varepsilon_{\mathrm{xx}} \\
\varepsilon_{\mathrm{yy}} \\
\gamma_{\mathrm{xy}}
\end{array}\right\}=\frac{1}{2 \mathrm{~A}}\left[\begin{array}{cccccc}
\mathrm{y}_{23} & 0 & \mathrm{y}_{31} & 0 & \mathrm{y}_{12} & 0 \\
0 & x_{32} & & x_{13} & & x_{21} \\
\mathrm{x}_{32} & \mathrm{y}_{23} & x_{13} & y_{31} & x_{21} & y_{12}
\end{array}\right]\left\{\mathrm{d}^{(\mathrm{e})}\right\}=[\mathrm{B}]\left\{\mathrm{d}^{(\mathrm{e})}\right\}
$$

$$
\mathrm{x}_{\mathrm{ij}}=\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}} \quad \mathrm{y}_{\mathrm{ij}}=\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}
$$

$$
\left[\mathrm{K}^{(\mathrm{e})}\right]=\int_{\mathrm{V}}[\mathrm{~B}]^{\mathrm{T}}[\mathrm{E}][\mathrm{B}] \mathrm{dV}=[\mathrm{B}]^{\mathrm{T}}[\mathrm{E}][\mathrm{B}] \mathrm{tA}
$$

Pascal's Triangle

- Used for determining a complete set of polynomial terms in two dimensions. ${ }^{\text {b }}$

- Greater the degree of freedom, less stiff will be element.
- Interpolation functions are easier to develop with area coordinates.

Natural Coordinates

- Coordinates which vary between 0 and 1 or -1 and 1 .
- Natural coordinates and non-dimensional coordinates.

1-d Coordinates

Possibility 1

$L_{l}(\xi)=(1-\xi)$
$L_{l}(\xi)=(1-\xi) / 2$
$L_{2}(\xi)=\xi$

$$
L_{2}(\xi)=(1+\xi) / 2
$$

2-D Triangular elements (Area Coordinates)

Homework Problem: Write cubic interpolation functions using area coordinates for nodes 1,2 and 10 .

Bi-Linear Quadrilateral

$$
\begin{gathered}
u=a_{0}+a_{1} x+a_{2} y+a_{3} x y \quad v=b_{0}+b_{1} x+b_{2} y+b_{3} x y \\
\varepsilon_{x x}=\frac{\partial u}{\partial x}=a_{1}+a_{3} y \quad \varepsilon_{y y}=\frac{\partial v}{\partial y}=b_{2}+b_{3} x \\
\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\left(a_{2}+b_{1}\right)+a_{3} x+b_{3} y
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}=1}^{4} \mathrm{~N}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \mathrm{u}_{\mathrm{i}}^{(\mathrm{e})} \\
& \mathrm{v}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \mathrm{v}_{\mathrm{i}}^{(\mathrm{e})}
\end{aligned}
$$

Interpolation functions in natural coordinates

$$
\begin{aligned}
\xi=\mathrm{x} / \mathrm{a} & \eta=\mathrm{y} / \mathrm{b} \\
\mathrm{~N}_{1}=\frac{1}{4}(1-\xi)(1-\eta) & \mathrm{N}_{2}=\frac{1}{4}(1+\xi)(1-\eta) \\
\mathrm{N}_{3}=\frac{1}{4}(1-\xi)(1+\eta) & \mathrm{N}_{4}=\frac{1}{4}(1+\xi)(1+\eta) \\
\frac{\partial \mathrm{N}_{\mathrm{i}}}{\partial \mathrm{x}}=\frac{\partial \mathrm{N}_{\mathrm{i}} \partial \xi}{\partial \xi} \frac{\partial \xi}{\partial \mathrm{x}}=\frac{1}{\mathrm{a}} \frac{\partial \mathrm{~N}_{\mathrm{i}}}{\partial \xi} & \frac{\partial \mathrm{~N}_{\mathrm{i}}}{\partial \mathrm{y}}=\frac{\partial \mathrm{N}_{\mathrm{i}}}{\partial \eta} \frac{\partial \eta}{\partial \mathrm{y}}=\frac{1}{\mathrm{~b}} \frac{\partial \mathrm{~N}_{\mathrm{i}}}{\partial \eta}
\end{aligned}
$$

Other Quadrilaterals

Complete quadratic

- The stiffness (row and column) related to node 5 is known at element level and as rows and columns of other elements do not add to it.

Quadratic element often used in practice:

- When internal nodes are eliminated care has to be exercised to ensure the mesh from such elements will converge.

Mechanical Loads

There are three types of mechanical loads

1. Concentrated Forces or Moments

- The loads must be applied at nodes when making the mesh.
- Theoretically the stresses are infinite at the point of application, hence in the neighborhood of concentrated load a large stress gradient can be anticipated.

2. Tractions

- Forces that act on the bounding surfaces.

$$
\mathrm{S}_{\mathrm{x}}=\sigma_{\mathrm{xx}} \mathrm{n}_{\mathrm{x}}+\tau_{\mathrm{xy}} \mathrm{n}_{\mathrm{y}} \quad \mathrm{~S}_{\mathrm{y}}=\tau_{\mathrm{yx}} \mathrm{n}_{\mathrm{x}}+\sigma_{\mathrm{yy}} \mathrm{n}_{\mathrm{y}}
$$

n_{x} and n_{y} are the direction cosines of the unit normal

- Tractions has units of force per unit area and are distributed forces.
- Usually the tractions are specified in local normal and tangential coordinates.
- These distributed forces must be converted to nodal forces.

In two dimensions the bounding surface is a curve. Distributed forces can be converted to nodal forces as was done in 1-d axial and bending problems. (work equivalency) $R_{j}=\int p(x) f_{j}(x) d x$

3. Body Forces

- Forces that act at each and every point on the body.
- Gravity, magnetic, inertial are some examples.
- These forces must be converted to nodal forces.
(See section 3.9)

