EXAM 1

1. Suppose we have the following differential equation $\mathrm{x}\left(\frac{d^{2} \mathrm{u}}{d \mathrm{x}^{2}}\right)+\frac{\mathrm{du}}{\mathrm{dx}}=3 \quad 0 \leq \mathrm{x} \leq 1$ and we are using the approximation of $u(x)=c_{1} x^{2}+c_{2} x^{3}$. Set up the equations in matrix form for solving c_{1} and c_{2} by (a) Least square method. (b) By Galerkin's method. (YOU DO NOT NEED TO SOLVE THE EQUATIONS).
2.

(a)-(d) The order of the highest derivative on u in a functional is r. For parts (a) through (d) circle the correct answers.
(a) The differential equation will be of order $\mathrm{r}-1, \mathrm{r}, \mathrm{r}+1,2 \mathrm{r}-1,2 \mathrm{r}$,
2r+1
(b) The essential boundary conditions will be on u and its detivatives $u p$ to order $r-1, r, r+1$, $2 \mathrm{r}-1,2 \mathrm{r}, 2 \mathrm{r}+1$
(c) The natural boundary conditions will be on the derivatives up to orderr-1, r, r+1, 2r-1, 2r, $2 \mathrm{r}+1$
(d) In Rayleigh-Ritz's method the approximating function must be differentiable up to order $\mathrm{r}-1, \mathrm{r}, \mathrm{r}+1,2 \mathrm{r}-1,2 \mathrm{r}, 2 \mathrm{r}+1$
(e) The set approximating functions must be independent. Circle the set(s) that are NOT independent.

$$
\begin{array}{ll}
\text { set 1: } & \left(x-x^{2}\right),\left(x^{2}-x^{3}\right),\left(x^{3}-x^{4}\right),\left(x^{4}-x^{5}\right) \\
\text { set 2: } & \left(x-x^{2}\right),\left(x^{2}-x^{3}\right),\left(x^{4}-x^{5}\right),\left(x^{5}-x^{6}\right) \\
\text { set 3: } & x(1-x), x^{2}(1-x), x(1-x)^{3}, x(1-x)^{4} \\
\text { set 4: } & x(1-x), x^{2}(1-x), x(1-x)^{2}, x(1-x)^{3}
\end{array}
$$

(f) The set approximating functions must be complete. Circle the set(s) that are NOT complete.
set 1: $\quad\left(x-x^{2}\right),\left(x^{2}-x^{3}\right),\left(x^{3}-x^{4}\right),\left(x^{4}-x^{5}\right)$
set 2: $\quad\left(x-x^{2}\right),\left(x^{2}-x^{3}\right),\left(x^{4}-x^{5}\right),\left(x^{5}-x^{6}\right)$
set 3: $\quad x(1-x), x^{2}(1-x), x(1-x)^{3}, x(1-x)^{4}$

$$
\text { set 4: } \quad x(1-x), x^{2}(1-x), x(1-x)^{2}, x(1-x)^{3}
$$

(g)- (h) $\mathrm{B}(\mathrm{u}, \mathrm{v})$ is a bilinear functional. For parts (g) and (h) circle the correct answers.
(g) $\mathrm{B}(2 \mathrm{u}, 3 \mathrm{v})$ will equal to $2 \mathrm{~B}(\mathrm{u}, \mathrm{v}), 3 \mathrm{~B}(\mathrm{u}, \mathrm{v}), 5 \mathrm{~B}(\mathrm{u}, \mathrm{v}), 6 \mathrm{~B}(\mathrm{u}, \mathrm{v})$
(h) $B\left(2 u_{1}+3 u_{2}, v\right)$ will equal to $2 B\left(u_{1}, v\right)+3 B\left(u_{2}, v\right), 3 B\left(u_{1}, v\right)+2 B\left(u_{2}, v\right), 5\left[B\left(u_{1}, v\right)+B\left(u_{2}, v\right)\right]$, $6\left[B\left(u_{1}, v\right)+B\left(u_{2},{ }^{*} v\right)\right]$
(i) u_{1}, u_{2}, and u_{3} are all independent variables and the condition
$\mathrm{a}_{1} \mathrm{u}_{1}+\mathrm{a}_{2} \mathrm{u}_{2}+\mathrm{b}_{1} \mathrm{u}_{1}+\mathrm{b}_{2}\left(\mathrm{u}_{2}+\mathrm{u}_{3}\right)+\mathrm{b}_{3} \mathrm{u}_{3}=0$ is true. Write all the conditions on the contants a's and b's.

N

(j)-(k)In Rayleigh-Ritz we approximate as: $u=\phi_{\mathrm{o}}+\sum \mathrm{c}_{\mathrm{i}} \phi_{\mathrm{i}}$. Write the functions ϕ_{o} and $i=1$
ϕ_{1} for one parameter solution for parts(j) and (k)
(j) Essential boundary conditions are: $u(0)=4$

$$
u(1)=0
$$

$\phi_{\mathrm{o}}=$

$$
\phi_{1}=
$$

(k) Essential boundary condition is: $\mathrm{u}(0)=0$ and natural boundary condition is $\frac{d \mathrm{u}}{d \mathrm{x}}(1)=2$
$\phi_{\mathrm{o}}=$
$\phi_{1}=$
3. A functional is given below. By finding the stationary value of I, obtain the following:
(a) The differential equation. (b) All possible essential boundary conditions. (c) All possible natural boundary conditions.

$$
I=\int_{0}^{1}\left[(1+x)^{2}\left(\frac{d u}{d x}\right)^{2}+3 u^{2}-x^{2} u\right] d x
$$

