M. Vable Variational Calculus 1-D

Variational Calculus in 1-D

The learning objectives in this chapter are:
* Understand the concepts in variational calculus.
* Understand the application of variational calculus to obtain boundary value problems in mechanics of materials.

Basic Concepts

Variational calculus is the branch of mathematics dealing with finding the maximum and minimum values of functionals.

* A function u(x) is a rule of correspondence such that for all x in D there is assigned a unique element u(x) in R. A functional
Flu(x)] is a rule of correspondence such that for all «(x) in R there is assigned a unique element Flu(x)] in £2 In other words, a
functional is a function of a function. Strain energy, the potential of work, and potential energy are all functions of the displacements
which are functions of the position coordinates.

1. We can walk to different points and measure the elevation— we will call it the d-process; so dx, ds, du represent the actual move-
ment along a path (curve).

2. We can conduct a thought experiment. For example, without moving, we ask the question, if we go to that point will the elevation
increase or decrease? This imaginary movement is called the virtual movement or the 5-process.

y
w

Virtual displacement function

Actual displacement function

Independent set of functions

alul+a2u2+a3u3o e o o +anun:O

If uy, uy, us,...u, are independent functions then above equation implies a, =0 i=1ton
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M. Vable Variational Calculus 1-D

*  Any set of independent variables (parameters) that describes the system geometry are called the generalized coordinates.

« The space spanned by the generalized coordinates is called the configuration space.

*  Any condition that limits the change in geometry in the configuration space is called the kinematic condition.

*  Functions that are continious and satisty all the kinematic boundary conditions are called kinematically admissible functions.

Extremum and Stationary Values

Find minimum of ¥ = F(u,u,, ® & & +u)
We consider a virtual change in the configuration space, that is, space spanned by the independent variables uq, us, #s,...t,. The total

virtual change 8F is the sum of the slopes multiplied by virtual change in each direction.

6F = Lsu + Louy+ Lsuse o 0 0+ 1 Lsy
Oy Dty Dy W, ©
* §F is called the first variation of F. If F is to be a minimum at a point in the configuration space, then this change of 8F must be
7ero.
SF = oF 5u1+aF 5u2+aF Buse o o o + +@8u =0
Oy Oty Oty u, "

If 21, 19, 14,...11,, are independent variables then we are free to move in any direction. So if we only walk in #; (all other virtual displace-
ment are zero) then we have 6F /9x; = 0. In a similar manner we can walk in each of the directions and conclude:
ar
Ou

*  For stationary values we need the virtual displacement to be reversible.

=0 i=1,2,3e e ep

irreveysible displacement

8F =0

eversible displacement

8F =0
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M. Vable Variational Calculus 1-D

Work

Work is done by a force if the point at which the force is applied moves. If the point at which force F is applied moves through an infin-
itesimal distance o, then the work is defined as

dW = F-du

A (Widyg = (Wa),p P (W) g+ (W), p = 0

*  Work done by a force is conserved if it is path independent.
*  Friction, permanent deformation are examples in which work will not be conserved.
* Rubber has nonlinear stress—strain curve. Work done in stretching rubber is recovered when the forces are released and the rubber
returns to the undeformed position.
Nonlinear systems and non-conservative systems are two independent descriptions of a system.
*  Work is a scaler quantity. Work from different types of forces and moments can be added.

Table 1: Work Expressions
Work

W, = ijx(x)u(x)dx+ZZ:1 Fu(x,) = ()

Axial

Torsion of circular shafts

Wy = [ tbde 30 Tbg) = 1)

Symmetric bending of beams - . s
Wy = ijy(x)v(x)cbc+Zqzlﬁqv(xq)+ oy Mm=(xy) = 1)
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M. Vable Variational Calculus 1-D

Strain Energy

The change in internal energy in a body during deformation is called the strain energy.
The energy per unit volume is called the strain energy density and is the area under the stress—strain curve up to the point of defor-

mation.
(6)

U:IVUOdV UO:IZGdS U():Isdc

0
G UO ?lementary strain energy density

dU,=edo / A

U, = Strain energy density

/

-dU, =6 de

—

/]

0 de

—ds f<—

The units for strain energy density are newton-meters per cubic meter (N - m/m3), joules per cubic meter (J/m3), inch-pounds per
cubic inch (in - 1b/in®), and foot-pounds per cubic foot (ft - 1b/ft%).
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M. Vable Variational Calculus 1-D

Linear Strain Energy Density

1 1
Uy = EGS Uy = EW

* Strain energy, hence strain energy density, is a scalar quantity. We can add the strain energy density due to individual stress and
strain components to obtain the total linear strain energy density during deformation.

1

E[Gxxgxx+ OyyByy T Oz ™ Ty

Linear strain energy in symmetric bending of beams

UO - +T yz'yyz + szyzx]

Two nonzero stress components, Gy and Ty, Gy, =Fe, and g, = —y(a’zv/dxz)

2 2
Uy = j Loel i = j j 1E[y&] dA |dx = 1[&J j Ey*dA |dx = 1jE} [é’jzdx
8 2 L7422\ gt L|2\gx?) "4 2L dxt

The strain energy due to shear in bending is Ug = (1/ 2)j1:

xyw/xde.

The maximum shear stress t,, and shear strain 7, are an order of magnitude smaller than the maximum normal stress o, and the max-
imum normal strain .. Ugwill be two orders of magnitude smaller than U/ and can be neglected in our calculations.

Table 2: Strain Energy and bilinear functional form of strain energy

Strain Energy
Axial ~ -
o C N || PP diccc] Ry
Uy = S|EAS) des Uy = S]|BA = |dv = SB(uy,up)
L Lt =
Torsion of circular shafts ~ -
b, = 1jGJ(d—¢jzdx- b = lj sk PR Lotsi. o)
r— 2 dx ’ r— 2 dx dx Tl
L Lt -
Symmetric bending of 2
beams 1= Ay dv due B = | BT ﬁ& T = A
B~ 2_[ zz| 2 by g S 2_[ zz 2 2 T2 (VI’VZ)
I dx . dx” dx
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Table 2: Strain Energy and bilinear functional form of strain energy

Strain Energy
Thin Plates P <3 242 2 2 2 2
U, = %) j{[a_‘;j +[a_"2"J +2v[a—ﬂ[a_‘;’} +2(1v)[—g‘g J }dxdy
4 NOx ay Ox /\Jy ey
62 82 82 82 62 62 62 82 62 62
W W W W W W W W W W
UP_%).” = —w i3 Yy g 53 t2l-viz ala 52 dedy
4 | Ox7 Ox oy~ dy ox~ Oy ox~ dy LoV oxLy
1
EB(WI,WZ)

Plane Stress Elasticity

_ Eh [ 762 ouw\(ovy (v (L=v)(ou , ov\?
Up = ——=]] {[a) 255+ (%) }* G5 [
[ [ &, Ou Ou,0v, Ou 0v ov,0v _ 5] oV 78 ov
U, - E_h” _1_2+V{_2_1+_1_2J Mk +(1 v)(_u1+_1)(_”2+_2) il
2(1 *VZ)A i Ox Ox Ox dy  Ox Oy oy dy 2 dy  Ox /gy Ox

1
= EB(“I’ Vi, Uy, Vy )

Virtual Work

+  Virtual work methods are applicable to linear and nonlinear systems, to conservative as well as non-conservative systems.

|The total virtual work done on a body at equilibrium is zer0.|

«  Virtual work implies it is not actual work but work done by actual forces in moving points through virtual displacements, or, virtual
forces moving through actual displacement.

SW =0  8W., = 8W,

nt
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Minimum Potential Energy

*  We define the potential energy function €2 as
Q=U-W (6.1)
U is the strain energy and ¥ 1s the work potential of a force.
« The “work potential of a force™ is associated with conservative forces only and implies that there is a potential function from which
such a force can be obtained.
*  Minimum potential energy and methods derived from it are applicable to conservative systems that can be linear or non-linear.
The internal virtual work is the variation in ¢lastic strain energy during deformation: 8, . = 8U

The external virtual work is the variation in the work potential of the force: 8, = 8W

SW.inI_SWexI = PG = Or

The virtual variation in the potential energy function is zero—which occurs where the slopes of the potential energy function with
respect to the parameters defining the potential function are zero.

Of all the kinematically admissible displacement functions, the actual displacement function is the one that minimizes the potential
energy function at stable equilibrium.

There are many kinematically admissible displacement functions, and there is no requirement that these functions satisfy the equilib-

rium equations or the boundary conditions on forces and moments.

* The actual displacement is kinematically admissible and satisfies all the equilibrium conditions and the static boundary conditions.

» If we choose an arbitrary kinematically admissible function and calculate the potential energy function, the value so obtained will
always be greater than the value of the potential energy function at equilibrium.

* The better approximation of displacement function is the one that yields the lower potential energy.

* The greater the degrees of freedom, the lower will be the potential energy for a given set of kinematically admissible functions.
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Stationary Value Of A Definite Line Integral

I(u) = j[;H(u', u,x) dx where W = du/dx

First variation: 8(x) = 8[°H(w,u,x) ds = [P8H(uw,u,%) dx = [° [_5 '+2—138u:| dx

*  Function and derivative are independent in virtual displacement.

*  Once we have considered virtual displacement, we are now on a specific curve and function and its derivative are related, that is, no
longer independent. If we are to draw any conclusion by setting 8/(«) = 0, then we need to obtain an expression only in #—we per-
form integration by parts.

sitw) = | [aHM } de =0 = [@H d( H]]s dx-i——Sub

=0
ou' dx ou o

Possibility 1: We meet the condition 8/(x) = 0 in the average or overall sense. This lead to approximate methods as the

condition 1s not satisfied at each and every point between a and 5.

Possibility 2: We require that 8/(x) = 0 at each and every point between a and b. This results in boundary value problem.
*  During the process of variation, the function and its derivative are independent.

«  After the process of variation, the function and its derivative are no longer independent.
* Integration by parts will generate an expression only in terms of variation of the function.

Boundary Value Problem

Differential Equation: ZH i (6H} =0 a<x<b
U

Boundary Conditions: [0H /84 = 0 or = 0] atx = aandatx = b
The above equations are called the Euler-Lagrange equations.
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M. Vable Variational Calculus 1-D

C1.1 The potential energy for symmetric bending of beams subjected to only distributed force Py and no concentrated force or
moment is given below. Obtain the boundary value problem for deflection v(x) by minimizing the potential energy.

1 P
_ v
Q= EJLE[ZZ{E] dxijpy(x)V(x)dx

where, L 1s the length of the beam; £ is modulus of elasticity; and /_, is the second area moment of inertia.
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Class Problem

The presence of a linear spring changes the potential energy to the following

L 252
Q= BE}ZZ@—‘;J —p(x)V(X)}bC+ %HV(L)]Q
X

y‘ |
Z L -
=

* e

k = spring constant

px)

Obtain the BVP for the beam shown above using variational methods.
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Generalization
I(u) = _[ZH(u(r), u(r_l), u(r_l), S ,u(l), u(o),x) dx u(r) = dusdx’ ©
2 2
Differential equation:aH _i[@H - } d f@H 5 +(-1)" d [ﬂ] =0
2) (r—1)
[%f_ljdi[%f_z]d(_z il _l[aH ] 0 e
8u( ) o 8u( ) dx dx(r ) 8u(r)
=)
[_@H ji +(-1) d” )[—GH j = or st = ¢
a2 dx Al 5,0
L3 (om 2
Boundary conditions atx =g and x = b +(fl)r —|—| =0 or Su( ) = 0
r (r=3) 5 ()
x du
L ] = or =
L = or =
L = or =
o o sV =
2"

1. Ifthe highest derivative in the functional is 7, then the differential equation will be of order 2

2. The boundary conditions with the variation symbol of & have derivatives from 0 to r-1. These quantities must be continuous and are
called primary variables. The boundary conditions are called kinematic boundary conditions or essential boundary conditions.

3. The boundary conditions that have derivatives of the functionals that vary from » to 27-1 are our internal forces and moments and
are called statical variables or secondary variables. The boundary conditions on these variables are called statical boundary con-
ditions or natural boundary conditions.

4. If the functional contains more than one variable (), say #; then we could replace u with u; in the above equations.

+ If the functional is quadratic in # and its derivative, then the boundary value problem will be linear. However, the above equations
are applicable to any functional.
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L.

2.

Rayleigh-Ritz Method (See Reddy Section 2.5)

Linear functional: /(o u + a,v) = o l(u) + oy l(v)
Bilinear functional B{o u) + o1y, v) = o) B(u), V) + ayB{uy, V) Blu, o v+ 0yVo) = oy B{u, v )+ oy Blu, vy)

Symmetric bilinear functional: B(x,v) = B(v,x); u and v can be vectors.

Rayleigh-Ritz method is a formal process of minimizing the functional (potential energy) given below using a series of kinemati-
cally admissible displacement functions to produce a set of algebraic equations in the unknown constants of the series approxima-
tion.

1
= EB(u, u)—l{u)

Rayleigh-Ritz method is applicable to conservative systems that may be linear or non-linear systems.

Approximation

ux) = fo+ 351 G

where, C; are constants to be determined. C; are the generalized coordinates as the variation of them represents the variation of the dis-

placement curve.

fy 1s chosen such that the non-homogeneous part of all essential boundary conditions are satistied.

f; are chosen such that the homogeneous part of all essential boundary conditions are satisfied. In other words, f; are a set of kine-
matically admissible functions.

f; must be sufficiently differentiable. In other words, the highest derivative in the functional Q must be defined.

7, must be independent. Otherwise, there exist values of of such that Z;:I Cf =0 and our matrix in the set of algebraic equations

will be singular.
/; must be complete. Otherwise, we may get large errors in our solution from our missing terms.

If all the above are satisfied then we have correctly chosen are functions, but the choice may not be a good choice because the series
converges very slowly.
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Algebraic equation

n

Q= %B(ul,uz)fl(ul) w(x)=fot 3,1 G and  uy(x) =f+t S 1 Cife
Hap) = Mo+ 30y Gf) = 1)+ 35— G
B(uy, uy) = B(fo+2;:1 Cifistp) = Blfy, u2)+2;:1 CiB(fs1y) = Bfpefo+ S, ckfk)+z;?: LCBUfo+ S Ci) or
B(uy,uy) = B(fo fo) + 37 _ | ChB (o i) + Z;?: [CB fo) Z;?: (3 GBSy
Bluy, uy) = Blfo.fo) + 3 CHBUpd) V BUp S + ) 31 GC B
Q = [3BU0fo) =100 |+ 550 -1 Thy GOBURID = Th -y G 1)~ 31BUof) + B ]
Q = QO+%Z‘;:1 S GBS - C}[z@)—%{ggo,@+3(f.,fo)}] whete @@= %B(fo,fo)—l(fo)

We take the first variation of potential energy and set it equal to zero to minimize the potential energy.

50 = 33 S [8C,CBU S + GO N -Th | SC}{E@)—%{B%,GHB@,J‘O)}} or

60 = 30| S G ORI Ty Ty 0GB )| 5, 5G] )~ 38U + B0

Symmetric Bilinear functionals: Bl fy) = BUpS): B f)) = B /)
60 = 137, T IS B+ BN~ Ty 3G ) BUn )1 = 3 8| T 1BGpIC~ U~ By 11

50 = 3 S 8GO B~ 3 SCU - B = T, Th_, 0GB FIC, ()~ B = 0 o

‘/

S BULSIC, U - B /)y =0 j = 1ton
Matrix Form: [K]{C} = {R} where Ky = BU. /) R, = ;)= BUy.f)
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M. Vable Variational Calculus 1-D

[K] is called the stiffness matrix and because the bilinear functional is symmetric, the stiffness matrix is symmetric.
If B(u, u) =0 for any u, then the stiffness matrix [X] is positive definite—a property that is used in solution procedures of algebraic

equations and in eigenvalue problems of dynamic systems. The convergence of the series is in the following sense
Q(uy) 2 Quy) if NzM
* Asdegree of freedom increases, the potential energy will decrease.

Potential Energy at equilibrium:

Let g* represent the solution of the algebraic equations (the values at equilibrium), that is Zz: , B fk)C;: = 1) -B(p1)

*

Q" - @w%zj?_lc}{zz_chf-awaZ}z;-*_lcj-‘{wmfo@} = g+ 330 CHIG B} ~ 3, ) U~ BUo )

or
B

Q" =, -I5" I =B £ = Q-2 COR or  Q -Q, =-is" R =_w
07 52,-15 1Y 0/ 0752155 i = -1

At equilibrium, the potential energy of the system is negative of half the work potential.
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C.2  Abeam and its loading are as shown below. Use the Rayleigh-Ritz method with one and two parameters to determine the deflec-
tionat x =0.25L,x=0.5L, x =0.75L, and x = L, and the potential energy function. Compare your results with the analytical solution.
Assume that £/ is constant for the beam.

/T\y
w
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Overview of Approximate Methods
1-D Heat Conduction:

2 g
dT _ 0 0<y<g — Differential Equation . X i
2
dx <3 L =
_kﬂ —- 0 Natural Boundary Condition
dx
x=10
T -7 Essential Boundary Condition
|x = & o
Beam Bending
P
v _
_Z[E ! _2} ~ Py HER L Differential Equation —
dx dx
<t L
d2 d2V
__d v i -
V== E[E]dx_z] =P M = EI 2 0 —— Natural Boundary Condition P
& =0 — Essential Boundary Condition
v(0) = 0 de| _,
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Approximation of Boundary Value Problem

Liu} = h in V/ Differential Equation T
D {u} = g, onl, Natural Boundary Condition
Dy{uj = g, onl, Essential Boundary Condition

_ " /; set of approximating functions
w=Jot Zj —197; s

set of f; is complete and independent.

= Z;: el iyt —(h=Li/oh) Error in Differential Equation
8y = T e BDallh ~lg, =B, 4 Error in Natural Boundary Condition
¢ = 3y 19D A0} (8, - Dell,},) Error in Essential Boundary Condition
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Commonality and Differences in Approximate Methods

Commonalities

*Produce a set of algebraic equations in the unknown constants c;.

*Choose [; to set one (or two) of the errors e e,, or e, [0 zero

*Minimize the remaining error.
Differences

eWhich error is set to zero

Domain Methods: e, =0 ore, =0

Boundary Methods: e ;=0

*Lrror Minimizing Process
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BEM: ¢ ;=0

FEM-Stiffness version: e, =0

FEM-Flexibility version: e,, =0

Error Minimization

[iPegar+ [ we,ds+ [ ye,ds = 0 — Weighted Residue

Jul@egdar+ [ye,ds = 0

v It

(W Pe s [ yle,ds -
W, e dQ+ jwi e,ds = 0
v F

€

ngn)ends+ nge)eeds =0
r r

i o

FEM: Discretization process is on domain of the entire body V'

BEM: Discretization process is on the boundary of the body I
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Class of Problems for BEM
I. Complex Boundary Shapes.

Grain Boundaries M_

Geological Flaws
Threads 1n a screw

I1. Shape Optimization of Components.
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Influence Functions (Fundamental Solution)
Have to find ¢; such that e, =0

fka—AO as Q> w

T<mw as Q—w

1. Conditions at infinity are implicitly satisfied in the formulation.
2. Influence Functions are singular at source point.

3. Influence Functions are not unique.
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Class of Problems for BEM

I11. Infinite Domain

IV. Large Gradients (near singularities)

b4 4

Material 1

v V¥
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Other Methods for Error Minimization

The methods below can be applied to boundary methods also. We will restrict our discussion to domain methods.
The error 1s: e; = ZJ?ZICJ.L{J;}—(h—L{fO}) = Z‘;:lcjijLH where ¥, = L H = «(h-L{f,})
Objective is to obtain: > 1Ko = Ry

1. Weighted Residue (Petro-Galerkin)

[wie dv = jwk[Z;: Loyt Hldy = [weHay + Z;?: lcjjq;kyjdV =0
v v v v
R, K ki
Makes the error orthogonal (minimizes) to the weighting functions v, . Very general but depends upon the choice of

Wi
2. Collocation

eqlxy) = H(xk)+z;?: L6(xg) = 0

Simplest method. General but depends upon location of x,
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3. Least Square

OF
E = ieﬁdrf 0 o 8ck = zj[acked](ﬂ/ = 2£ykeddV =0 or
j H+Z A0V = ijde+Z | J.jyﬂkdrf =0
v V
R, Kig

It 1s general. Minimizes error. Produces a symmetric matrix. Can be computationally very expensive.

4. Galerkin

In weighted residue choose: v, = 7,

jfkeddV = jfk[H+ Zj’f’: Lefrldv = jfkth+ Zj’f’: 1cjjfkyjdr/ =0
14 V
=Ry Kig

General and will produce same results as Rayleigh Ritz’s for problems that have functionals of the type needed by
Rayleigh-Ritz method.
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C.3 A boundary value problem is as shown below

2

Al op=®  pitf=8 uly=4
2

dx

Find 1 parameter solution and compare it for the following methods.

1 1

2
(a) Rayleigh-Ritz method. Use the following functional: Q = %j[(%) - u2:|dx + .[xzudx

0 0
(b) Collocation method. Use midway point to set error to zero.
(c) Least square method.

(d) Weighted residue. Use y, = x
(e) Galerkin’s method.
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Weak Form

Prelude to weak form

Forward Process.

where, L is the length of the beam; £ 1s modulus of elasticity; 4 is the cross sectional are

and P 1s a point force applied at x =I..

Step ! First variation

dx Ndx

Step 2 Integration by parts

du

E . o
8Q = FA 5u |0—jL

dx dx

e du i
50 = [EAdx(L)fP}Su(L)f[EAdx(O)}Su(O) jL[ [EAd
Step 3 Boundary value problem: 8Q = 0

Differential Equation: di(EAdu] p(x) =10

d.

[EA %)814 dx — ijx(x)au(x)dx =

In many engineering application we have the boundary value problem but not a functional like potential energy. We will first go
through the steps of obtaining the boundary value problem from a functional for axial members, then we will reverse it to understand
the basis of weak form. Then develop a procedure for developing the weak form from a given boundary value problem.

Obtain the boundary value problem for axial displacement #(x) by minimizing the potential energy below

Q= —jLEA(du) dy = [, p(x)mu(x)de - Pu(L)

a; p, is distributed axial force per unit length;

8Q = j EAQS[‘E”)cbc—ijx(x)su(x)cbc—Pau(L)

Pdu(l) or

) +px(x):|8u(x)dx

0=x=L

Boundary Conditions: #(0) = u,, EA%(L) =P

Expanding Educational Horizons; madhuvable.org 26




M. Vable Variational Calculus 1-D

Reverse Process.
Obtain the functional from the given boundary value problem

d du _ . _ du _
d(EAd) px) =0 0<x<L;u(0) = uy EASX(L) = P

Step 1 Multiply the differential equation by —8# and integrate from 0 to L.

_ d duj
80 = _jLE( . Buds [, p Suds

Step 2 Integrate by parts and transfer half of the derivatives. If the order of differential equation is 2r then transfer » derivatives.

L
30 = —EA@S +J. [EAdu) (SH)dx—J.pr(x)Su(x)dx or
0 dx

dx dx

56 = fEA—(L)Su(L) +EA—(0)8u(0) t jL(EAdu)—x(Su)dxf.[

pr(x)Su(x)dx

Step 3 Substitute boundary conditions. Note #(0) = u, implies 8u(0) = 0

8Q = - P8u(L)+ |, (EAd”]_(au) dr - |
x

pr(x)Su(x)dx or

dudv

8Q = fPV(L)+jLEAd - [, palx)vix)ds where v = Su

Step 4 Identify the bilinear and linear functionals.

B(u,v) = jLEA?jvd Iv) = ijx(x)v(x)dx+Pv(L)

Step 5 TF bilinear functional is symmetric, that is, B(x,v) = B(v, ) then

Q= %B(u,u)fl(u) [See Reddy]

2jL (duj dxf'[prudfou(L)

Expanding Educational Horizons; madhuvable.org 27



M. Vable Variational Calculus 1-D

Procedure to develop weak from BVP

Procedure is valid for 1-D, 2-D, and 3-D.
We will assume the differential equation is of order 2r. Note v is du in the procedure below.

Step 1 Multiply the differential equation with (-1)"v and integrate over the region. Note v (8x) must satisfy the homogeneous essen-
tial boundary conditions and the principal derivatives up to order ) must be continuous.

Step 2 Transfer half the derivatives from u on to v by parts (Green’s formula, Divergence theorem). Thus, if the oder of differential
equation is 2r then transfer » derivatives.

Step 3 Substitute all the natural boundary conditions on #.

Step 4 Substitute all the essential homogeneous boundary condition on v (6u). Some terms will drop out of the equation.
Step 5 Collect all the terms in which only v appears (and not ). Label these by the linear operator {(v).

Step 6 Collect all terms in which u and v appear. Label these by the bilinear operator B(v, u)

Step 7 The integral expression is 8Q = B(v, u) —I{(v) = B(8u,u) - I(du)

We will use the formulation of Step 7 in finite element method.

« Ifthere are more than 1 differential equation then in Step 1 we will multiply equation 1 by (-1 )rlv1 , equation 2 by (-1 )rzv2 and add

the product to define §Q . We then proceed as above for each term.
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C.4  Construct the weak form for the following boundary value problem

Tu =22 Ocx<liu(0) =y, D1y =1
dx2 dx
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