M. Vable Variational Calculus and FEM 2-D

Variational Calculus 2-D

The learning objectives in this chapter are:
*  Understand the application of variational calculus to obtain boundary value problems in two dimensions.

Stationary value of a definite area integral

* In stationary value of an area integral the transfer of derivative is accomplished by using Green’s theorem.

Mathematical preliminaries

The Green’s formulas 1s written below for convenience.

122 ey = bfgdy | (gL away iy = —bgdn— [[eL ey
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where f{x,y) and g(x,y) are two continuos functions in the area 4 that is bounded by the curve I'.

¥y
N
= = £
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by < 5] A

()
We can relate the Cartesian coordinates (x, ) and to normal and tangential coordinates (7, 5).
x = ncosO—ssinb y = nsinQ +scos0

n = xcosO+ysmb 5 = —xsind +yecost
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M. Vable Variational Calculus and FEM 2-D

We define the direction cosines of the unit normal as

on _ _ Js _ On . _8S
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If a point is restricted to the boundary, then dn =
dx = (fsme)ds = fnyds dy = (cos®)ds = n,ds
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where, R, . 1s the radius of curvature of the boundary at the point under consideration and can be function of s.

By Chain rule:

Stationary value of a functional with first order derivatives

I{u) = ”H(u,x, U s Uy x, v)dedy where U, = Ou/0x ., = Ou/0y
A
* A subscript without a comma implies a component and with a comma implies derivative.

_ ij{@fﬁjgu,{ [ ) (aH]Squxaj} ”M j )+[ ]_(5 )+[6H)8u
8I(u) = i’[g]j Hx+(2f,) 8uds+ j[(aH) —3 ) %@iy):lSdeay -0

X

Differential Equation: O —i[a ) ( ) =0 xyin R
Ju ady au

Ox\Ou
.. [rem ) (6]{ ) ~
Boundary Conditions: ( n = or du =0 x,yon S
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M. Vable Variational Calculus and FEM 2-D

C.1  (a)In heat conduction, the thermal energy of a plate 1s given by the functional below. Obtain the boundary value
problem.

ety R :

Ritz’s approximation 7(x,y) = ¢_(x,») + ZZC b, (x ¥) [See Reddy example 2.5.3]
i

(b) Find 1 parameter solution for the 1x1 square shown.

M 1o
y

% - 0 é =0
Z
7 -

777228

e g
on

Expanding Educational Horizons; madhuvable.org 3



M. Vable Variational Calculus and FEM 2-D

C.2  Obtain the weak form for the following boundary value problem.

62T 62T 71 i
I'=T, onx = landy = 1 %lé =1,
21:1 onx = Qandy = 0 é
an 7 =X
V//////g/{//////ﬁ,l
=~ =1
on
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M. Vable Variational Calculus and FEM 2-D

C.3 (a) Obtain the weak form of the given elastostatic boundary value problem for 1sotropic materials in plane
strain. (b) Construct the functional whose stationary value will give us the boundary value problem.

Y 5] (C‘m avj:| _
2 +7\.,—+7\.,— + =0
[ R L] R |
x,yin A
o (83{ av)]+a[h_+2”_:|+ e r
@x[u dy Ox ayL @ ( ) fy 1
I
|:(2M+7L)a_”+ h@v:| +M(8_u+@) =t
ox @ dy Ox * u=u,

S %, x,yonl L x,yonT

_+_) A—+ (20 +A)—|n, = ¢ B
[M[ay @x] |: i) :| Y ’

where, # and v are the components of displacements in x and y direction; /. and fy are the components of body force and t, and t, are the components

of applied tractions; x, and v, are the specified displacements; and W and A are the shear modulus and Lame’s constants.
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M. Vable Variational Calculus and FEM 2-D

Triangular Element For Second Order System in 2-D

Linear: u(x) = Cy+Cx+Cyy

The triangular element is the simplest element that can be used for modeling regions with curved boundary.
* Area coordinates are natural coordinates used in triangular element.

s A; 4, Ag
o/gj L= L=l Lg== LtLytig=
X/ |IT]®}7<| = 2(Area of triangle PJK)
b A[ = [(xJ_x)(yK_y)_(xK_x)(yJ_y)]/z

AJ = [(xK—x)(yI—y)—(x[—x)(yK—y)]/2
Ap = [(xp=x)(;=y) = (=) (¥ -»)1/2

A4 = [(xJ_x[)(yK_J/[)_(x[(_x[)(J/J_J/[)]/z

oL ¥y OL —-X
! _ 7JK I _ JK - -
& 24 & 24 Ve =g and ye=youg
oL y OL —-X
J _ K] J _ Ki — -
& 2 & 2a e ma=eperad g =y

® 24 oy o4 e Xpp=xp=xyand y;=y-y,
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M. Vable Variational Calculus and FEM 2-D

Pascal’s Triangle

Pascal’s triangle helps determine how many nodes should be on an element to get a particular order of polynomial.

Lagrange Polynomials

Linear g = L[ L = LJ 5= LK
£ = Ll(le_ 1) £ = LJ(ZLJ— 1) L= LK(ZLK— 1)

Quadratic
£ = 4L, £ = 4Ly £ = 4l
K K
J
I ) ] . :
Linear Quadratic Cubic
b
m_ n,p _ m!n!g! myn,p _ _ m!n!g!
/{ILI Lyl gebedy (2A)(m +n+p+2) IaLI Lyl ds = (b a)(m +n+p+ 1)
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M. Vable Variational Calculus and FEM 2-D

C.4  Obtain the cubic Lagrange interpolation function for triangular elements for nodes 7, 8, and 9.

Expanding Educational Horizons; madhuvable.org 8
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LD

C.6

Obtain the formula for I; and I, in Appendix A.

Obtain K(lel) and K(lez) of the stiffness matrix and R(le) of the right hand side vector for Poisson’s equation with

quadratic triangular element. [See Appendices].
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Variational Calculus and FEM 2-D

Isoparametric Formulation

Original Shape

Primary variable approximation:

Coordinate Transformation:

dr.,

dx
= dL
{ dy } ] 7

dL

Transformed Shape

M
_ (e)
=3 L L)

=

c= S SOy L L) O - g
Zl_zliwi ptrtk Y Zizlyi Wiltpfop fg Vi~ 4

Sub-parametric: M < N ; Isoparametric:A/ = N Super-parametric: M > N---Not used

N s, N oy, N oy,
_ (e)"7) (e)7i (e)r;

L 1 g i=1 K
N s, N oy, N oy,
_ (e) "y (e)ri (e} Vi
= M + e + :
& [Zl_ly; aLJdLI [Zl_ly; aLJdLJ [Zily, aLK}dLK
[ZN xge)@%] [ZN xge)a%] [ZN xge)a%]
i=1 "' OLp i=1 "' 0Ly i=1 ' OLg _ _
[/] = ----Jacobian matrix
N o, N oy, N oy,
y(e)_z y(e) i y(e)_z
2,_%ier) |\ e, Xl ar,

*  The Jacobian matrix is a rectangular matrix and cannot be inverted. But L., + 7. ;+ L = 1 or dL;+ dL;+ dlL, = 0. We can eliminate

one of the three area coordinates and then proceed. See Zienkiewicz (Ref: 6) for additional details
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Variational Calculus and FEM 2-D

M. Vable

Appendix A and B
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M. Vable
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M. Vable Variational Calculus and FEM 2-D

APPENDIX C: Stiffness matrix and right hand side vector for quadratic triangular element.
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Rectangular Element For Second Order System in 2-D

Linear:
y
3 4
u(x) = Cy+ Cix+ Cyy+ Caxy
1 2 :;_
Higher order polynomials
y
4 xy4 x2y4 x3y4 x“y4
¥y
y3 "ZV3 szs x:’f x“y3
2 X ) )2 x4?
¥ Xy "‘2.17 ng x"y
X
1 x P x x4
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Natural Coordinate
Linear transformation

¥
& e e e ('lal) " (151)
3 4 M -G8 ) 3 4
(5 ~xt) 05 -5
1 2 1 2
x (-1,1) 1,-1)
Approximation of primary variables
Linear
- _d-&ad-n 1., _
(-1,1) T @ Vi oLy e
1-n|=0 4 __(A+e)a-my _1
® - -1 _
3 ° e s g s U SRt}
& = 10 _ _(-gya+my _ 1.,
1+E =0 : Vs T Oy et e
_{d+e ey 1
Wy 1) L FEd+m)
1 g o2
(_1’_1) 1 n-= 0 (1,_1)
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Variational Calculus and FEM 2-D

Tensor Product

Linear approximation of primary variable.

n
® 4
’ ’ 5 T2 -m) 218 )
[wl %} 2 |:ﬂ M] _ |4 12 4 "
vy SR 2 lavpaom laraam
1 o’
Quadratic approximation of primary variable
§ : BNy |
7 o wgw] 309
.4 Wy Ws gl T | (1-gh [@)(ln)(lnz) @)(Hn)}
W3 W Wo &
Hare
1 2 3 . h
® . »
16

Expanding Educational Horizons; madhuvable.org




M. Vable Variational Calculus and FEM 2-D

Isoparametric Formulation (Reddy’s Section 9.3)

Coordinate Transformation: Original Element

N N
B MR A TCEIEEED W Y
1= A=
Primary Varlable approximation:
o e
=3 W& m)
=1
[soparametric:

M = Nand ¢,(&,n) = y,(&n)

N o, N 00,
dx = [Z,‘=1x5 )§Jd§+[zi=1x§ )%Jdn
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dy = . de + e |d
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|7] = Jacobian = Determinant of [I] = (G_x)(éy] (@y](@x} 0---See Example 9.3.1
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(e)@‘bJ
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n
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Poisson’s Equation

2 2
Viu=2240% -
dx Oy

B(e)(v, u) = j J(%g—z + %} ey l(e)(v) = J. J.fvdxdy £ :f;qnvds where g, is the specified value of%

A(e) A(e)

Evaluation of stiffness matrix and right hand side vector

T
oy, | | 0w,
dy.oy, oydy, ox ox
Ky =8y = [ |25 5 b = [ ] dedy R = [y = [ [fwdedy + ba,wds
x Ox Oy Oy 5 7
4® @ OV | oW 4@
gy | oy
ay, ay,
i 1|0 .
Substituting Tl [/] 1]9% dxdy = |J|dédn and assuming f = j(e),the value at the center of the element.
dy, dy,
oy on
/s
11 a_w" @_Ll{,- 11 11
(e) _ ag 1,7 -1]068 _ (e) _ fe)
K= 1] /] 1 1] ldgdn = [ [ Fgmydedn R = £ [ wlldedn + §g,wds
~i- a_wi G_ij i |
an on
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Analytical evaluation of stiffness matrix and right hand side vector

Assumption: The original element is a quadrilateral hence we can use linear coordinate transformation.

i (e)
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=
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c7 Obtain ¢, !¢

!
i

) k'¢), and R\ for a linear rectangular element shown for use in solution of Poisson’s equation,

4

.

o

Z
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Serendipity Elements (Section 9.2.3 of Reddy)

* The internal nodes increase the degree of freedoms (number of unknowns) with minimal impact on accuracy. The objective is to
obtain the same order of polynomial without the internal nodes.

*  Cannot use tensor product to get interpolation functions.

Quadpratic serendipity element

_A-a0-miEtn D (1) g
v = SEREEEEDL - (g mE i)

. El=@ 0l =0T 22 . (%)(1,@2)(1,1])

Y27 o)+ 1oy

_@—aa-meeEt gt -10]

(2)(2)(8) - é(lfé)(lfn)[%:%nz),lo]

W
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Green’s Formula

Stationary value of a functional with second order derivatives in rectangular coordinates

Expanding Educational Horizons; madhuvable.org
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I a 2= ¥
) = jo(uH, Uogyo Wy U U4 Ty x, vidxdy where U = @zu/@xz Uy = @zu/@yz Uy = @zu/axay
A
Differential Equation
2 2 2
o"(oH % o"(oH )+ o” (oH )7E[GH)7E(6HJ+(Q{) .
axzkau,m ayz\au,yy axay\au,xy Ox\Ou /  oy\ou J  \Ou

Boundary Conditions

00 o su =0

2 :

P at x = 0andx = a

i(_@H )Jri[@H )73(8]{) =0 or Su =0

o 6u,xx ay @u’xy Dx 6u,x

O — 9 ot Su_ =0

Ot oy 24

; at y = Qandy = b

3@]{ ]+3@H )73@]{) =0 or  Bu=0

0y % ox Uy ay Uy
Corner Conditions

[6]{):0 or Suy = 0 k=1to4
ijxy %
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M. Vable Variational Calculus and FEM 2-D

C.8  Obtain the boundary value problem for thin plate bending starting with the functional given below.
2

252 252 2 2 2
Q{w) = QIJ{[a—W] +[6_W] +2v[a—w}[a—w] +2(1—\))[—a hid ] }dxdy—jjp wdx dy
2 2 2 2 2 Oxdy z
4 WNOx dy dx~ /\dy A
where, w is the plate deflection in the z direction; p_ is the distribute force per unit area on the plate; D = Wiy [12(1 - vz)] is the plate

bending rigidity; % is the thickness of the plate; E is the modulus of elasticity; and v is the Poisson’s ratio.
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The boundary value problem for the plate shown can be written as

/é] - a >
Simply Supported /

Boundary value problem for simply supported plates

/,

Simply Supported

4 4 (x,7)
A
Ox Ox" 0y~ dy B
02w 0
02w Ony =20 w(x,0) =0 —2(x’ ) = 0
Onx =0 w(0,y) =0 —Z(O,y) =0 oy
ox 62
20 Ony=b  wxb=0 Z&_g
Onx =a w(a,y) =0 —z(a,y) =0 oy
Ox
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M. Vable
approximation determine the deflection w at the center of the plate and the potential energy for each case.

C9
w(x,y) = Cysinn(x/a)sinn(y/a) + Cysinn(3x/a)sinn(y/a) + Cysinn(x/a)sinn(3y/a)

A square plate is uniformly loaded and is simply supported on all sides as shown. Using Rayleigh-Ritz method and the given

y .

Y Y
Sumply Supported >
Y
Po

&@
S
LS8
Aé l
&) 9 4
5
Jupported

5
Simply

o —7
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Conforming and non-conforming elements

*  When the continuity of primary variables are ensured at the nodes and the boundary then the element is called a conforming ele-
ment.

*  When continuity of primary variables are only ensured at the nodes but not ensured across the boundary then the element is called
non-conforming element.

Continuity of primary variable on boundary

Linear Element

M
k[l L,=¢a el Z_iluﬁe)wi(LpLJ,LK
3 ! . L
/ Linear Element: | = Z; Yy, = L; Yy = L
2 : e _ (&Y () & (e
On line 1-2:: (1 a)ul +au2
J
1
I
&
2 (D) _ (1 &)y 1 &
, (lfa)u1+au2
2) _ (4 & £
(1 aju1+au2
1
&
4

*  The polynomial approximation will result in a continuity if # depends only on the nodes that are on the boundary line.
*  For second order systems only continuity of  is needed but for 4th order systems u and its derivatives must be continuous.
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; ; Ot Ju
P bles: #, — and —
rimary variables: u, = an a

tinuous.
3
y
1 2
X
oA
A
x

Secondary variables will have second order derivatives:

Challenges for fourth order system in 2-D

2 2 2
du Ou du

, , , and third order derivatives. Secondary variables can be discon-
6x2 8y2 Oxdy

2

Along line 1-2 9 will depend on nodal values of node 1 and 2. Thus 0 u
ay oxady

will depend

upon nodes 1 and 2.
2
o u

ayox

Along line 1-3 g—z will depend on nodal values of node 1 and 3. Thus will depend

upon nodes 1 and 3.

2 82
15 equal to ayax

because of independent

; o5, . i 1
At node 1 t satisfy th dit
node 1 we may not satisty the condition oy

values of node 2 and 3.
Continuity of cross derivatives in different oriented coordinate system will require
continuity of all second order derivatives.
Continuity of all second order derivatives may imply that secondary variables must
be continuous, while actual situation requires the secondary variable to be discontin-
uous.
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Triangular element

Rectangular element

n
9.12) (13,16)
3 4
g
1 2
(1,4) (5,8)

1 Ws Wo Wi3

Tensor Product: ? Ve W10 W14

3 W7 Wy Wis

1 Vg W12 Wig)

Each node has the following 6 degrees of freedom.
2 2 2
Ou Ou Ou Ou_ Ou

fa axa ays axzs ayzi %

Total degrees of freedom for the element = 21

Each node has the following 4 degrees of freedom.

2
O D D
3% on’ Bgon

Total degree of freedom = 16.

Can be used only for original element oriented as the master element shown.

Hermite Polynomials: = i@?’ -3E+2)

H{ ()
H ()
Hy P (8)
Hy(2)

gt = 2@’-doeeny wY = (JE0-3-n ml -

EH?O}mw)ff?*<n> HY () HY (¢

Each mid point has 1 degree of freedom of the normal derivative g—u.

Conforming elements for fourth order systems

n

GRS
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M. Vable Variational Calculus and FEM 2-D

Possible reasons for using non-conforming ¢lements

1. Imposing complete compatibility may result in a situation where discontinuity in secondary variable cannot be simulated.
2. Convergence rate is too slow. Alternatively the number of degree of freedom are too many.

3. Different order of differential equations govern the physics of the problem, thus at the junction there can be a discontinuity in the
derivative of the function.

4. The dimension in one direction is small compared to the other direction, thus do not want to commit lots of resources in the direc-
tion of the smaller dimension.

Some observations related to non-conforming elements

*  When non-conforming elements are used convergence is not guaranteed. That is, mesh refinement may not increase accuracy.

+ Patch test is sometime used to check convergence issues for non-conforming elements. Patch test is a numerical test of a small
assembly of element subjected to known analytical solution and the numerical results are checked for convergence to analytical
solution.

*  Can the higher order differential equation be replaced by a set of lower order differential equation. For example, the classical beam
bending differential equation is a fourth order differential equation. It can be replaced by two second order differential equation in
Timoshenko beams.
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