M. Vable Review

Review

Variational Methods in Engineering

Variational methods is the name of mathematics by which we find extreme values.
1. To find an extreme value we need to compare.

2. The comparison 1s in the immediate neighborhood and will give us only a local extremum value and not a
global extremum.

Independent set of variables: When a variable in a set cannot be represented as a function of the other variables.
UL, Uy Uz, u, are independent variables if there exist no non-zero values of a’s for which the following is not

agu| tayly tazuye o e e +gu =0

Generalized Coordinates: Any set of independent variables (parameters) that describes the motion or geometry of

the system.

Degrees of Freedom: Number of variables needed to describe the behavior of the system.

Kinematic Conditions: Any condition that limits the change 1n geometry.

Kinematically admissible function: A function that is continuous and satisfies all kinematic conditions.

« Actual movement: d-process: dx, ds , du, du....... Derivatives can be obtained from the functions and hence func-
tion and derivatives are not independent.

« Virtual displacement or the é-process: Imaginary displacement in which function and its derivatives are inde-
pendent. A virtual displacement must be kinematically admissible.

« Stationary value of a function: The first variation of the function 1s zero. The displacement must be reversible
at the stationary point.

« Extremum value of a function: Two possibilities: (i) The first variation of the function is zero and the sign of
second variation needs to be specified for determining maximum or minimum value. (/) First variation 1s not
zero and the displacement is not reversible-- happens on boundary for monotonic functions.

« Functional: A rule of correspondence such that for each function value u(x) in R there 1s a unique value F{u) in £2..
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To find the first variation of a functional [6F(u)]

1. During the process of variation the function u and its derivatives are independent.

2. After the variation, we are on a curve and u and its derivatives are not independent. We have to transfer the
derivatives so that all terms 1n the domain integral are terms multiplying (6u).

LD [AL) b= ol | (L
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[dz—d; ’ H /r/—[cds—dy }
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HI ag)dxaﬁfdz = jjnchg)dS—”j@i;gcbcdydz

7
: Virtual change (6u) must satisfy all kinematic constraints.

3

4. For definite integrals variation (6) and integral are commutable.
5. Variation (6) and differentiation are commutable.
6

. All boundary terms in the first variation of a functional (integral) are product of secondary variable and the
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variation of primary variables. Thus, stationary value of a functional implies that at each boundary point
either the secondary variable 1s specified or the primary variable be specified (zero or non-zero).

b
]:.[F(u(r)?u(r—l):u(r—l)? o :u(l)?u(o):x) S

a

Where #"! = ¢"u/ax". The stationary value &7 = 0 implies the following

2 3 r
The differential equation is:9F —i{a‘p 1 J L4 (anJ_ d (6F3 J + +(=1)" ¢ {ﬂ] =0
au(o) dx @u( ) dxzkau( ) dx%@u( ) . @u(r)
All possible boundary conditions are:
_ Su = 0
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(r—3) du™ =0
i[@F ]+ . s 78 aFj_O
dx 61,5(3) dx(r_3) 8u(r)
=0
e =0
e =10 =0
* - =0
oF  _
(r) -

Natural Boundary Conditions Essential Boundary Conditions.

« If the functional / has the highest derivative of order r then the differential equation will be of order 2r.

- For differential equations to be linear the functional can at most be quadratic in # and its derivatives.

« The boundary term with the symbol 8 are the primary variables. The boundary conditions on the primary vari-

ables are called essential boundary condition Primary variables are the (-1) derivatives. These derivatives are
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also called principal derivatives.

« The term multiplying the primary variables are the secondary variables. The boundary conditions on the sec-
ondary variables are called natural boundary conditions.

« If the functional contains more than 1 variable (u, v, w) then the above equations have to be written with respect
to each of the variables.

Stationary value of an area integral:

I = jJ.F(u, o Uy x, y)dxdy
A

oF_D(OF) B() g e

Ou  Ox\ou/ Oy @uy
2_1:;”"+2_2ny_0 oF du = 0 xyonl

Stationary value of a volume integral:

= .[.[F(u, Ty Uy Uy X, 1, 2)dxdydz

T
oF o(oF a(oF diaF Yy _ :
P [ G| P ) [P i R xy,zin T
ou Ox\ou/ Oy @uy Dz\Ou_
ar or or _ _
a—uxnx+a—uyny+a—uznz—0 or ou = 0 x,y,zon S

« (Generalization to higher order derivatives will have form similar to 1-D with partial dertvatives in each direction
in place of ordinary derivatives. There are however terms related to curvatures and corners that will come in the
natural boundary conditions.

Linear Functional /(u)

Howu)y = al(u) Hoquy +oguy) = o f{ug) +ogf{u,)
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Bilinear Functional B(z, v)
Blou+ pPv) = aB(u)+ BB(v)
Blojuy +oguy, Byvy + Byvy) = o [ByBluy, vi) + BaBluy, vo) ]+ g [ B Blag, v + By Bluy, vy)]

Blu,v) = B{v, u) Symmetric Bi-linear Functional

Approximate Methods
Approximation: u = ¢+ ij 1 ¢;P;

¢, is a set of complete and independent approximating functions. On substituting in the boundary value problem we

obtain the errors:
e;— Error in differential equation.

e,,— Error in natural boundary condition.
e,— Error in essential boundary condition.
Commonalities
- Produce a set of algebraic equations in the unknown constants c;.
« Choose ¢, to set one (or two) of the errors e, e, or e,, to zero
«  Minimize the remaining error.
Differences

«  Which error 1s set to zero
Domain Methods: e, =0 or ¢, =0

FEM-Stiffness version: e, =0
FEM-Flexibility version: e,, =0
Boundary Methods: e ~0
« Error Minimizing Process

Various Methods

Description below is in context of domain methods but these can also be used for boundary methods. Thus, ¢, must
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be differentiable up to the order of differential equation. ¢, is chosen to satisty all non-homogeneous part of ALL

boundary conditions. ¢, are chosen to satisfy homogeneous part of ALL boundary conditions.

Weighted Residue (Petro-Galerkin)

jkpkeddV =0
4
Makes the error orthogonal to the weighting functions v, . Very general but depends upon the choice of y,

Collocation
eylx,) = 0
Simplest method. General but depends upon location of x,

Least Square

oF

= =90
@ck

E = [egdv
v
It 1s general. Minimizes error. Produces a symmetric matrix. Can be computationally very expensive.

Galerkin: In weighted residue choose: y, = ¢,

[peqav =0
4

Rayleigh Ritz’s Method

Functional: 7(u) = %B(u,u)fl(u)

Approximation: x = ¢+ Zn ¢,
i=1

1. ¢, 1s chosen to satisty all non-homogeneous part of ALL essential boundary conditions. ¢, are chosen to
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satisfy homogeneous part of ALL essential boundary.
2. ¢, must be differentiable at least to the highest order of derivative in the functional I(u).

3. The set of ¢, must be independent.
4. The set of ¢, must be complete.
Algebraic Equations: [K]{c} = {R}

Ky = %[B(d)k, b )+ B(¢ by )] Ry = l(p) —5[Bbpd,) + Bldy, ¢yl

b=

If B(w,u)>0 forany u then:
(a) the matrix [K] will be positive definite.
(b) Iuy)=I(u,)  N<M

Weak Form
The objective 1s to weaken the continuity requirements on ¢, to half from the order of derivative of the differen-

tial equation. (similar to Ritz’s requirement).

Weak form may be obtained in one of the two ways:
1. Taking the variation of the functional and not transferring any derivatives. (Requires existence of a func-

tional.)
2. Multiplying the differential equation by a function (v = 6u) and transferring half the derivatives from # on
to v and substituting the boundary conditions.
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Finite Element Method

Polynomial Approximations

« If a variable (coordinates or primary variables) 1s modeled using a higher order polynomial than it actually 1s,
then it will be modeled exactly as long as the set of approximating functions are complete.

« Continuity of a variable on the element boundary 1s assured if the variable depends only upon the nodes on the
element boundary.

Lagrange Polynomials

1. Ensures continuity of the function at end nodes. Derivatives of the function can be discontinuous.

2. Its value 1s one at 1ts own node and zero at other nodes.

(P = B P, are coordinates of node j.
d(P)) { o i ; j

Multiply the equations of node (1-D), or equations of line containing the nodes (2-D), or equations of planes containing the nodes
(3-D) to ensure 0 value at other nodes. Divide the product by substituting the coordinates of its own node to get value of 1.

3. e hi=1

4. Lagrange Polynomials are used in approximation of 2nd order differential equations.
Hermite Polynomials

1. Ensures contmuity of the function and dertvatives at end nodes.

2. It 1s zero if the derivative order or the node are different. It 1s one if derivative order and the node 1s the
same.

ae*

3. Hermite polynomials are used for 4th and higher order differential equations.

n=p and = m

k
dH}{?m} o n#p or k=m
&) =1,
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Natural Coordinates
1. Coordinates which vary between O and 1 or -1 and 1.

2. Natural coordinates are non-dimensional coordinates.

1-d Natural Coordinates
- @11

Prn

- db. b,
= [x xl} Yo (O g e = e

}

E=— —é §=|1
_ C [x(xeytxy) 2 db, 2 do, B ok
N — =TI Z[T} =Gz e

2-d Natural Coordinates

Area Coordinates
Ly = 55l —x0)0-pg) ~ =3 (=)

1

A = E[(x[*x]()(){]*y]()*(y[*y]()(xl]*x]()]
A A A

_ 77 _ _ 7K -
LI_Z LJ—Z LK—E LitLy+Ley=1
o, (00,)3L; (20,)0L; (0%, \oLg
ox 0L ) Ox OL ;) Ox OL ) Ox
m! nlp! LR d = (24) m! nlp!
| Vertisl & (m+n+p+2)

A

b
ITE g = (b—d)
.[af JUK (m+n+p+1)
Use Pascal Triangle to determine the number of nodes on a triangular element.
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Volume Coordinates
I
1 4

Rectangular Elements
"
3 4
i
1 2
1=<E<1 1=<n=<1

- 2|:x(x2+x1)/2 _ —(y3+¥1)/2

L

V = Volume of the tetrahedron NIKM=V+V;+V+Vy,

, _ VolumePIKM _ "I
4 v v
;_ Volume PKMI _ "
J v v
_ Volume PMIJ _ &
L e sl e I e S
K v v
;_ Volume PUK _ "M
M v v

- L +
I eSS o o VY &2 Vo L ST L YA ey V'S

n
3 4
1 2 &

- Use tensor product to obtain the Lagrange polynomials for higher order.
Serendipity Elements: No nodes in the interior.

3-d Natural Coordinates

V(=2 ) g I 17~ Vi )]
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|
V= gl = Uk iy — 2k t O Y P gy =Sty T G 20O gy~ Y]

Ob; _ (00 \OLy (9, \0L; (0, oLk (0, \oLy
ox  \oL ox \oLj)ex \B0Lg)ox 0L, Jox
minlplg!
(mtntptgt3)

[[TL7LIL LS, dedvdz = (67)
5
« Use Pascal tetrahedron to determine the number of nodes needed for higher order polynomials.

Brick Elements

4 4
| I
| I
7 | 2 3 7 l g g
P A e .
/ /
// /
/
gl A7 6 3 6
P
-1<8<1 —1<n=1 -l=<p=l 0<g<l 0O<m=<l1 O0<p<l
x— (%) + )/ 2] y—(y3+y)/2 ¢ = iy i = [y_yl
; I | L Y3—h 2 A3
[2—(zg+2,)/2] o= |2k
S 500
L 25*21 L .

Serendipity Elements: No nodes either on the surface or in the interior. The nodes are only along the edges.
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Conforming and Non-conforming Elements

Conforming Element: All continuity requirements are met on the element boundary.

Non-Conforming Element: All continuity requirements are met at the element nodes but the continuity requirement
on the element boundary is relaxed.
- Non-conforming elements may only converge in a particular orientation.
« Non-conforming elements are used because fully conforming element

—requires too many degrees of freedom.

—may result in continuity of secondary variable even when a discontinuity is needed.

—a given direction may not require the same accuracy.

Coordinate Transformation

Let the order of polynomial for approximation: of coordinates (geometry) be A and of primary variables be M.

Subparametric: M <N

Isoparametric: M =N

Superparametric: M > N.

Original Element: The element of the mesh that can have curved boundaries.

Master Element: The element in natural coordinates for which approximating functions are created.

Jacobian matrix: Matrix relating derivatives in natural coordinates to derivatives in original coordinates (Carte-
sian).

Jacobian: Determinant of the Jacobian matrix. Used in changing the original integrating variables to natural vari-
ables.
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Procedural steps in the finite element method

Step 1: Identify discontinuities in the secondary variables, material properties, and source terms.

Step 2: Divide the body into elements, making sure that the discontinuities are on the element boundaries.
Step 3: Construct the weak form at the element level. Identify the bilinear and linear functional.

Step 4:  Construct the approximating function for the primary variables (¢;)

Step 5: Develop the coordinate transformation equations that convert the Cartesian coordinates to natural coordinates. Compute
the Jacobian matrix and its inverse.
Step 6:  Obtain the element matrices and the element right hand side vectors. Assume B(u.v)=B(v,u)

Ky =80 B = 1y

Step 7: Transform from local orientation to global orientation if needed.

1. T

K] = &k ') = 1 R

Step 8: Assemble the global matrix and global right hand side vector.

T
s1 = y81' = a1 = Z{aug’)} [[bg)]{u(g)} - {R(Cf)}j
e e e
Step 9: Draw the equivalence for the secondary variables.
Step 10: Incorporate the boundary conditions.

T
of = {dugi ([Kgliugt—1Rgzi) = 0
Step 11:  Solve the algebraic equations for the primary variables. [K,]{u,} = {R;}

Step 12: Obtain secondary variables and other quantities of interest.
Step 13: Interpret and check the results.
Step 14: Refine the mesh if necessary, and repeat the above steps.

Numerical Integration

1 n
IDiz =] Foyde =5 wiF(E,)

« w;are called the weights; &, are called the base points; and » 1s number of base points.Functions are evaluated at
base points.
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1 .1 n n
2-Dir=j lj FEAER) =5 5wk FE,m))
EES (i

| t 2 "
3Dr=[ [ | Fenpddde =3 3 3 wwwFEn, pp)
L = g =

« Secondary variables and related quantities are evaluated at Gauss (base) points.
Storage and Solution

Banded Matrix: All non-zero elements of the global matrix are within the bandwidth (2Ng). The bandwidth 1s dictated

by the difference between the highest and the lowest node number on the elements. Stored in rectangular matrix of
NxN B
Skyline Storage: Used for sparse matrices. Element stored as vector composed of segments of H;, where H; 1s the col-

umn height above the diagonal containing the highest non-zero element in the global matrix.

Wavefront equation solver: Assembly and equation solving proceeds simultaneously. Wavefront number 1s a measure of
number of coeflicients being manipulated in the solution process at a given step.

Substructure (Matrix Partitioning): Internal nodes of an element or a structure are eliminated in terms of the node on
the boundary.

Direct Methods of Equation Solving: Good for multiple load vectors. Matrix inversion, Gauss Elimination, Gauss-Jordan,
Cholesky’s Method.

Iterative Methods: Good for time dependent and non-linear problems. Jacobi, Gauss-Seidel, Successive Overrelax-
ation.

Gauss Elimination: [K]=[L][U]; Solves the solution by forward and backward substitution.

Cholesky’s Method: Can be used only for positive definite symmetric matrix. [K]=[L][L]"

Modeling

« A model is a symbolic representation of the real thing.
Errors in FEM

1. Modeling error:
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Error that arise from the description of the boundary value problem (BVP): Geometric description, material description, loading,
boundary conditions, type of analysis.
Non-linear analysis: Material non-linearity; Geometric non-linearity; Contact problem.

2. Discretization error

Errors that arises from creation of the mesh.
Mesh refinement methods: h-method; p-method; r-method and their combinations.
Error norms: L; norm; L, norm; Energy norms.

3. Numerical error

Errors that arise from finite digit arithmetic and use of numerical methods.
Integration error; Round off error; Matrix conditioning error.
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Time Dependent Problems

1. Treat time like any other space variable and obtain the weak form by integrating over time and space.

n
DA YCTED

2. Assume that time and space can be separated. Weak form is constructed by integrating over space and we
obtain ordinary differential equations in time.

I

«= % 40009

1

2
[M]{%}HC]{%}HK]{H} = (R}
i

« The matrices [AM]and [K] are symmetric, positive definite matrices. The matrix [¢] may not be positive definite
but is symmetric.

« FEigenvectors are orthogonal with respect to [M], [K], and [C].

Classification of problems

1. Free response: {R}={0}--cigenvalue problem.

Numerical Methods: [H]{y} = A{y} . Symmetric matrix preferred: [H] = [H]T

Free vibrations; 2nd order equations: [C]=0 and {R}=0. {u} = {x}e'i !

Consistent mass matrix. [K] = [L][L]T
11
Lumped mass matrix. [Af] = [M]z[M ]2
First order equations: {R }=0 and {M}=0 fuy = {x}e—w [K] = [L][L]T

Free response of a damped systems: {R}=0 {u} = {x}ew ® =+ i_co2

Rayleigh damping: [C] = o[M] + B[K]
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2. Periodic response: {R(1)} 1s periodic

(R} = {fre” {fu} = {x3e™ =0 +i o,
3. Transient (forced) response: {R(t)} 1s arbitrary.

Indirect Method: Frequency response:
Any function can be represented by a Fourier series

LD MR G U N Al

=1 4=

(0]-1

Indirect Method: Modal analysis:

The response of a system is a linear combination of the eigenvectors of the system. The basic idea here is to find the coefficients of
the linear combination.

I3 .1 n
et =3 (x3e™ =y yixg
j=1 J=1
2
dy. .
mi_2’+ciE’+kiyi =7 i=1ton
dt

Direct Method: First order system
Approximate time derivatives by finite difference.

du du _{ul, e —{uly,
o] ra-nff] |, -

ntl

Solution at time t =t,,.; 1s found from solution at time t =t,.
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