M. Vable Numerical Integration, storage, and solution techniques

Numerical Integration (Quadrature)

1-D Numerical integration
1
I = j_lF(g)da =3 wFE)

® w; are called the weights; £, are called the base points; and n 1s number of
base pomts.Functions are evaluated at base points.

Trapezoidal rule: (r = 2, linear approximation of F(§)
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Simpson’s rule (# = 3, quadratic approximation of F(§)):
1
1= ] Fed - L(F(E)) + 4F (E) + F(ER))

Newton-Cotes quadrature

» Equally spaced base points.

For (n -1 )th order polynomial 1s integrated exactly by choosing » base points. Hence
the error is of the order of A", where £ is the distance between two data points.
Note there are n parameters (weights) that can be adjusted.

Gauss quadrature (Gauss-Legendre quadrature)

Location of base points &, 1s determined such that the error 1s minimized. Thus,

there are 2n parameters. Hence, a polynomial of order (2n-1) will be integrated
exactly. Using this idea the weights and base points are determined. It turns out that
the base points are the roots of Legendre Polynomials.
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Table 1: Weights and Gauss (base) points
n Base points &; Weights w;
One point formula 0.0 w;=2.0
Two pOiI'It formula i( 1 /ﬁ) = +0.5774 W= W= 1.0
Three point formula 0.0: +J0.6 = +0.7746 w1=(8/9); wy=w3= (5/9)
2-D Numerical integration
1 1 1 1 F(EJ )
I= F(E, = Wwow, L1,
J I FEmdedn MWL ALCR)

CHAPTER 9; INTERPOLATION FUNCTIONS, NUMERICAL INTEGRATION, AND MODELING CONSIDERATIONS 55]

Table 9.3.1 Selection of the integration order and location of the Gauss points for linear, quadratic,
and cubic quadrilateral elements (nodes not shown).

Order of Location of
integration poinis®

Maximum Order of

Element polynomial  infegration  the
type degree (r=r) residual in master element
n
Constant (r=1) 1] I1x1 )
=5
n
-1
ff, b a-fF
n=yT __4::?".‘_- . '?Z“'
Linear (r = 2) 2 2x2 onty . [l e il
1 =
i

Quadratic (r=3) 4 (3x3) o)
n
E=-0861. T £=0861
1} 1 L}
1=0861.- - FFFTFH
Cubic (r =4) 6 @xd) opy N=0B--F4re-o ¢
1 T e
n=-0330.- -t o~ oo
1

n=-086l.--j0 -9 - 9ol
1 I}

*See Table 6.1.2 for the integration paints and weights for each coondinate direction.

3-D Numerical integration

1 1 1 % 5 ”
I= J._l -[_1 J._IF(E.»: n, p)dﬁdﬂ dp = Zkz . Zj . Zf . wi‘ijk*F(E-*jﬂ T]Jr'!‘ pk)
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C.1 Evaluate the integral below using 1,2, and 3 points Gauss Quadrature and compare with
analytical value.

® More Gauss points increases the accuracy of integration but may make the
element more stiff thus decreasing the FEM accuracy.

* Two few Gauss points may cause instabilities resulting in singular stiffness
matrices.

® Evaluation of secondary variables and related quantities (stresses) at Gauss
points 1s usually more accurate than at nodes.
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Storage and Solution Techniques

Banded Matrix

« Each nodc has two degrees of freedom (u and v)
* Element matrix1s 6 x 6

LTE= Linear Triangle Element ¢
2 4 6 8
. LTE LTE LTE
Half Band Width =N]%> - - _—
1 3 > 7

1 (2 (3 |4 |5 |6 V7 |8 |9 |1011 (12|13 |14 |15 |16
1 X X X X X o 0 0 0 0 0 0 0 0 A
2 X x x x x |0 o o0 o o 0 0 0 0
3 X X X X X |x x o o0 o0 o0 0 0 0
4 X x| x x x|x x]|0 o o0 0 0o 0 0
5 X X | x x X |x x| X X o 0 0 0 0
6 X X | x x|x x x| x x| 0 o 0 0 0
7 U = x|= = %l = x| = = 0o 0 O
8 0 X X |x x|x x x| x x |0 0 0
9 0 0 0l x x| x X x|l x x|[x X 0 N
wypo o 0 X x| x x| x X x| x x|0
mgo o 0 0 0l x x| x X X | X X| X X
20 0 0O 0 0 ¥ xl|lx x| x X x| x x
B3go0 o0 0 0 0O 0 X X | x X X | x X
440 0o 0 0 O 0 O X x| x x x X X
50 o0 0 0 0O O 0 0 0] x x x X X
lego o 0O 0 O 0O 0O 0 0 X X X X X

* Only the upper banded form of the global stiffness matrix is stored in a
rectangular matrix of size NxNg
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Banded Matrix
3 6 ¥ 8
LTE LTE LTE
LTE LTE ITE
1 2 3 4
Half Band Width =Ng >
1 |2 (3 |4 |5 |6 (7 |8 |9 |10(11 (12|13 |14 |15 |16
1 x x x 0 0 0 0 x x 0o 0 0 0 0 A
2 X x x 0 0 0 0 x x|[0 o o0 0 0
3 X X x x x 0 0 x x|x X 0o 0 0
4 X X | x x x 0 0 0 0fx x| 0O 0 0
5 0 0 ]x x x x x 0 00 0] x x 0
6 0 0| x x| X x x 0 010 0 x x| 0O
7 O 010 0] x x x x x |0 0l x x| x «x
8 0 010 0] x x| X x x [0 0] x x| x X
9 x x|x x |0 0] 0 0 x| x x| 0 0] 0 O N
wgx x|x x| 0 010 0 x x x| 0 0] 0 0
11 0lx x|x x| 0 0 x X x| x x| 0 O
124 0 x x| x x|0 0 x x X x x| 0 O
30 0 0l x x| x x 0 0 x X x| x x
440 0 0 x x| x x 0 0 x x X X X
50 0 0 0 0l x x 0 0 0 0 x X X
i6go 0 0 0 0 x x 0 0 0 0 x x X _L

® The bandwidth is solely dictated by the difference between the highest and
the lowest node number on the elements.
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Equation Solving [K]{d}={R}

Direct Methods: Matrix inversion, Gauss Elimination, Gauss-Jordan, Cholesky’s
Method.
Iterative Methods: Jacobi, Gauss-Seidel, Successive Overrelaxation.

Gauss Elimination

» A lower triangular matrix has zero coefficients above the diagonal [L]
» A upper triangular matrix has zero coefficients below the diagonal [U]

Any matrix [K] can be decomposed as [K]=[LL][U]. The algebraic equations
become: [L][U]{d}={R}. If we substitute [U]{d}={x} we obtain [L]{x}={R}. The
solution is obtained in two steps:

1. Forward substitution: Solve for {x} from: |[L]{x}={R}
2. Backward substitution: Solve for {d} from: [U]{d}={x}

 If the algebraic matrix 1s symmetric and positive definite then the

decomposition is done using Cholesky’s method to obtain [U]=[L]".
» Forward substitution is dong in increasing node number order and

backward substitution 1s done in decreasing node number order.
Pros and Cons

« Direct methods are better for multiple load vectors. The computation

time is proportional to NN .

» Computation times for iterative methods depend upon the starting
guess solution. In time dependent problems that are solved in small
time steps the initial guess vector 1s known from previous time step.
Non-linear problems which are solved as linear problems iteratively
also usc less time 1n 1terative methods.
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Large Systems

Skyline storage scheme

The stiffness matrix of very large structures may have mostly zero terms, even
inside the band width. Such matrices are called sparse matrices.

H;= The height of the column above the diagonal of the i row beyond
which there 1s no non-zero term.

<] [x] 0 0o o 0 0 0
X X 0 0 0 0 0 0
| Il [« [x] o o o o
0 0 X X 0 0 0 0
0 0 0 ol [x] [l © 0
0 0 0 0 X X 0 0
X X 0 0 X X _X B i
X X 0 0 X X X X

X X X 0 0 0 0

\J
< X |« [x] o] [o o |o
\
X X k\ X X X 0 0 Hi
X X X §\ X X 0 0
\
] 0 X X } X X X
AN
] 0 X X X } X X
N\
0 0 0 0 X X } X
N

b 6 6 b x x % &J—

Skyline algorithms are used for sparse matrices.
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Algebraic equations can be written as:

Wavefront (Frontal) equation solver:

Assembly and equation solving proceeds simultaneously.
Computation of coefficients in a stiffness matrix and load vector 1s
complete only when contribution of all elements that share the node
have been added.

A complete coefficient can be processed in the solution process.
Wavefront number 1s a measure of number of coefficients being
manipulated in the solution process at a given step.

Substructure (Matrix partitioning)

[A] i Bl W} __ R}

o ol| g ®

The two sets of matrix equations can be solved as shown below.

[414d}} + [Bl{dy} = {R;3OT  {d\} = [A] '({R,} ~ [B]{dy})

[C1¢d,} + [D]{dy} = {Ry}
[CIIAT ' ({R,} — [Bl{dy}) + [D1{dy} = {Ry}
([P1-[CIAT ' [BD{dy} = {Ry} —[C14] R}

\ /
[Kslidy} = {Rg}

In substructuring {d,} are the nodal displacements on the interface of two substruc-
tures and {d, }are the displacements of nodes on either of the substructure.

Substructuring 1s used for large structures. Each substructure can be
used as a superclement if a substructure repeats in a structure.
Substructuring could be used for creating meshes with different densi-
tics either for creating original mesh or for mesh refinements.

In non-linear analysis such as in elastic-plastic analysis. The plastic
zone 18 made a part of a substructure.
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