EXAM 2

1.

(i) Using the natural coordinate (ξ) shown, write the Lagrange interpolation function associated with nodes 3 and 4 for the cubic element. The nodes are evenly spaced.

(ii) Plot the approximate shape for the Lagrange interpolation functions associated with nodes 1 and 2.

(iii) Using Area coordinates $\mathrm{L}_{\mathrm{I}}, \mathrm{L}_{\mathrm{J}}, \mathrm{L}_{\mathrm{K}}$ write the Lagrange interpolation function associated with nodes 5 and 7 . The nodes are uniformly spaced.

(iv) Write the expression for $\frac{\partial \phi_{7}}{\partial \mathrm{x}}$ from the Lagrange interpolation function you obtained in part (iii).
(v) Using a 3 point Gauss quadrature evaluate the following integral :I $=\int_{-1}^{1} \frac{\left(1+\xi^{2}\right)}{\left(1+\xi^{4}\right)} d \xi$

(vii) In FEM we are using, the differential equations are satisfied exactly inside an element. TRUE / FALSE
(viii) In FEM we are using, the essential boundary conditions are satisfied exactly on the boundary. TRUE / FALSE
(ix) In FEM we are using, the natural boundary conditions are satisfied exactly on the boundary. TRUE / FALSE
(x) In iso-parametric elements the primary variables and coordinates are approximated by the same interpolation functions.

TRUE / FALSE
2. A beam has a uniform load and a moment applied to it as shown. Model the beam using two equal beam elements. Assume EI is a constant for the beam. (a) Write the global stiffness matrix and the right hand side vector before incorporating the loads and boundary conditions. In terms of w, L, E and I determine : (b) the slope at B ; (c) the reaction force at C ; (d) the deflection at $\mathrm{x}=\mathrm{L} / 2$.

3. (a) Derive the boundary value problem on u by finding the stationary value of the functional I below.

$$
\mathrm{I}=\iint_{\Omega} \mathrm{F}\left(\mathrm{u}, \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{x}, \mathrm{y}\right) \mathrm{dx} d \mathrm{dy}+\oint_{\Gamma} \text { guds } \quad \text { where } \quad \mathrm{u}_{\mathrm{x}}=\frac{\partial \mathrm{u}}{\partial \mathrm{x}} \quad \mathrm{u}_{\mathrm{y}}=\frac{\partial \mathrm{u}}{\partial \mathrm{y}}
$$

Ω is the domain with the boundary Γ, and g is a function defined on the boundary.
(b) Apply your results of part (a) to obtain the specific boundary value problem for the functional below.

$$
\mathrm{I}=\iint_{\Omega}\left[2 x u_{x}^{2}+3 u_{x} u_{y}+y^{2} u_{y}^{2}-5 u\right] d x d y+\oint_{\Gamma} \sin \left(\frac{\pi x}{a}\right) u d s
$$

(b) If the geometry is the rectangle shown, write the boundary conditions at $\mathrm{x}=\mathrm{a}$ and $\mathrm{y}=\mathrm{b}$.

