Stability of Columns - Bending due to a compressive axial load is called Buckling. - Structural members that support compressive axial loads are called Columns. - Buckling is the study of stability of a structure's equilibrium. #### Learning objectives - Develop an appreciation of the phenomena of buckling and the various types of structure instabilities. - Understand the development and use of buckling formulas in analysis and design of structures. Printed from http://madhuvable.org/free-downloads # **Buckling Phenomenon** #### **Energy Approach** Neutral Equilibrium #### **Bifurcation/Eigenvalue Problem** $$PL/K_{\theta} = \theta/\sin\theta$$ #### **Snap Buckling Problem** $$\theta = 0$$ $$0 < \theta < 45^{0}$$ $$\frac{P}{K_L L} = (\cos(45 - \theta) - \cos 45)\tan(45 - \theta)$$ $$0 < \theta < 45^0$$ $$\frac{P}{K_L L} = (\cos(\theta - 45) - \cos 45)\tan(\theta - 45)$$ $\theta > 45^0$ $$\theta > 45^0$$ $$\theta > 45^0$$ # Local Buckling Axial Loads **Torsional Loads** C11.1 Linear deflection springs and torsional springs are attached to rigid bars as shown. The springs can act in tension or compression and resist rotation in either direction. Determine P_{cr} , the critical load value. Fig. C11.1 ## **Euler Buckling** #### **Boundary Value Problem** Differential Equation: $EI\frac{d^2v}{dx^2} + Pv = 0$ Boundary conditions: v(0) = 0 v(L) = 0 #### **Solution** Trivial Solution: v = 0 Non-Trivial Solution: $v(x) = A \cos \lambda x + B \sin \lambda x$ where: $\lambda = \sqrt{\frac{P}{EI}}$ Characteristic Equation: $\sin \lambda L = 0$ $P_n = \frac{n^2 \pi^2 EI}{L^2}$ n = 1, 2, 3. . Euler Buckling Load: $P_{cr} = \frac{\pi^2 EI}{L^2}$ • Buckling occurs about an axis that has a minimum value of I. #### Mode shape 1 $$P_{cr} = \frac{\pi^2 EI}{L^2}$$ #### Mode shape 2 $$P_{cr} = \frac{4\pi^2 EI}{L^2}$$ #### Mode shape 3 $$P_{cr} = \frac{9\pi^2 EI}{L^2}$$ Printed from: http://madhuwable.org/free-downloads # **Effects of End Conditions** | Case | 1. B P A V A Pinned at both Ends | One end fixed, other end free | One end fixed, other end pinned | 4. B P P A V A Fixed at both ends. | |---|--|--|---|--| | Differen-
tial
Equation | $EI\frac{d^{2}v}{dx^{2}} + Pv$ $= 0$ | $EI\frac{d^{2}v}{dx^{2}} + Pv$ $= Pv(L)$ | $EI\frac{d^{2}\mathbf{v}}{dx^{2}} + P\mathbf{v}$ $= R_{B}(L - x)$ | $EI\frac{d^{2} \mathbf{v}}{dx^{2}} + P\mathbf{v}$ $= R_{B}(L - x) + M_{B}$ | | Boundary
Conditions | v(0) = 0 $v(L) = 0$ | $v(0) = 0$ $\frac{dv}{dx}(0) = 0$ | $v(0) = 0$ $\frac{dv}{dx}(0) = 0$ $v(L) = 0$ | $v(0) = 0$ $\frac{dv}{dx}(0) = 0$ $v(L) = 0$ $\frac{dv}{dx}(L) = 0$ | | Characteristic Equation $\lambda = \sqrt{\frac{P}{EI}}$ | $\sin \lambda L = 0$ | $\cos \lambda L = 0$ | $tan \lambda L = \lambda L$ | $2(1-\cos\lambda L) \\ -\lambda L\sin\lambda L = 0$ | | Critical
Load
P _{cr} | $\frac{\pi^2 EI}{L^2}$ | $\frac{\pi^2 EI}{4L^2} = \frac{\pi^2 EI}{\left(2L\right)^2}$ | $\frac{20.13EI}{L^2} = \frac{\pi^2 EI}{(0.7L)^2}$ | $\frac{4\pi^2 EI}{L^2} = \frac{\pi^2 EI}{(0.5L)^2}$ | | Effective
Length—
L _{eff} | L | 2L | 0.7L | 0.5L | $$P_{cr} = \frac{\pi^2 EI}{L_{eff}^2}$$ Axial Stress: $$\sigma_{cr} = \frac{P_{cr}}{A}$$ Radius of gyration: $r = \sqrt{\frac{I}{A}}$ $$\sigma_{cr} = \frac{P_{cr}}{A} = \frac{\pi^2 E}{(L_{eff}/r)^2}$$ Slenderness ratio: (Leff/r). Failure Envelopes - Short columns: Designed to prevent material elastic failure. - Long columns: Designed to prevent buckling failure. C11.2 Columns made from an alloy will be used in a construction of a frame. The cross-section of the columns is a hollow-cylinder of thickness 10 mm and outer diameter of 'd' mm. The modulus of elasticity is E = 200 GPa and the yield stress is $\sigma_{yield} = 300$ MPa. Table below shows a list of the lengths 'L' and outer diameters 'd'. Identify the long and the short columns. Assume the ends of the column are built in. | L
(m) | d
(mm) | | | |----------|-----------|--|--| | 1 | 60 | | | | 2 | 80 | | | | 3 | 100 | | | | 4 | 150 | | | | 5 | 200 | | | | 6 | 225 | | | | 7 | 250 | | | C11.3 A force F=600 lb is applied to the two bars structure as shown. Both bars have a diameter of d=1/4 inch, modulus of elasticity E=30,000 ksi, and yield stress $\sigma_{yield}=30$ ksi. Bar AP and BP have lengths of $L_{AP}=8$ inches and $L_{BP}=10$ inches, respectively. Determine the factor of safety for the two-bar structures. Fig. C11.3 ### **Class Problem 1** Identify the members in the structures that you would check for buckling. Circle the correct answers. Structure 1 Structure 2 Structure 3 Structure 4 AP AP AP AP BPBPBPBP None Both Both None Both None Both None Printed from: http://madhuvable.org/free-downloads C11.4 A hoist is constructed using two wooden bars to lift a weight of 5 kips. The modulus of elasticity for wood is E = 1,800 ksi and the allowable normal stress 3.0 ksi. Determine the maximum value of L to the nearest inch that can be used in constructing the hoist. Cross-section AA Fig. C11.4