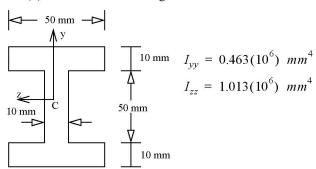
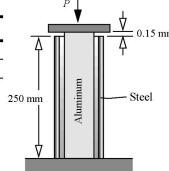

1.


(i) A beam of elastic-perfectly plastic material has a yield stress of 50 ksi. Point A on the cross-section shown just reaches yield stress in *compression* at a given load. (i) Sketch the stress distribution as a function of y. (ii) Write the expressions for bending normal stress  $\sigma_{xx}$ , dA and the intervals you would use to evaluate  $N = \int_A \sigma_{xx} dA$ . Use coordinate y and parameter 'a' representing the distance of elastic-plastic boundary from neutral axis in writing your stress expressions. DO NOT EVALUATE THE INTEGRAL.

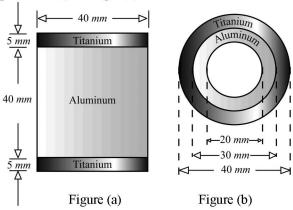


(ii) Determine the three second area moment of inertias  $I_{yy}$ ,  $I_{zz}$ , and  $I_{yz}$  for the cross-section shown.




(iii) The internal bending moments on the cross section shown above were determined to be  $M_y = -20 \ kN - m$  and  $M_z = -25 \ kN - m$ . Determine (a) the orientation of the neutral axis and (b) the maximum bending normal stress.

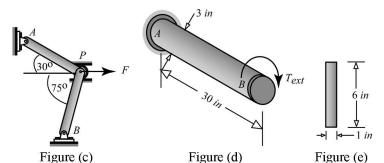



2. Figure below shows an aluminum circular rod inside a steel tube. The aluminium rod is slightly longer than the steel tube and has a diameter of 40 mm. The steel tube has an inside diameter of 50 mm and and outside diameter of 70 mm. If the applied load P = 200 kN and the temperature is *decreased* by  $100^{\circ}C$ , determine the deformation of aluminium rod and the axial stress in the steel tube.

|                                   | Aluminum | Steel    |
|-----------------------------------|----------|----------|
| Modulus of elasticity             | 70 GPa   | 210 GPa, |
| Coefficient of thermal expansion. | 23.2μ/°C | 11.7μ/°C |



3. The table below gives the material properties of titanium and aluminum. The figures shown are cross sections of either axial rod, or a shaft, or a beam. Use this information to answer questions (i) through (v).


|                             | Titanium | Aluminum |
|-----------------------------|----------|----------|
| Modulus of elasticity       | 100 GPa  | 70 GPa   |
| Shear modulus of elasticity | 36 GPa   | 28 GPa   |



- (i) In Figure (a) the maximum bending normal strain in titanium was found to be 0.0004. The maximum bending normal stress in aluminum is  $\sigma_{max}$  =
- (ii) In Figure (b) the maximum torsional shear strain in aluminum was found to be 0.0003. The maximum torsional shear stress in titanium is  $\tau_{max}$  =
- (iii) The internal torque acting on the cross section Figure (b) is 3.8 kN-m. The maximum torsional shear stress in aluminum is  $\tau_{max}$  =
- (iv) The internal bending moment acting on the cross section in Figure (a) is 2.5 kN-m. The maximum bending normal stress in aluminum is  $\sigma_{max}$  =
- (v) The internal bending shear force acting on the cross section in Figure (a) is 50 kN. The maximum bending shear stress in aluminum is  $\tau_{max}$  =

In questions below assume the material is elastic-perfectly plastic with properties given in the table below. Using this information to answer questions (vi) through (ix).

| Modulus of elasticity       | 30,000 ksi |
|-----------------------------|------------|
| Shear modulus of elasticity | 12,000 ksi |
| Normal yield stress         | 30 ksi     |
| Shear yield stress          | 18 ksi     |



- (vi) Each of the two bars in the structure shown in Figure (c) have lengths of 10 inch and cross sectional area of 0.16 inch<sup>2</sup>. The collapse load is  $F_{collapse}$  =
- (vii) The circular shaft shown in Figure (d) is made from elastic-perfectly plastic material. Due to the action of the torque the section at B was seen to rotate by 0.15 radians. The depth of plastic zone in AB is depth =
- (viii)The beam cross section shown in Figure (e) is made from elastic-perfectly plastic material. The depth of plastic zone is 0.5 inch. The maximum bending normal strain is  $\varepsilon_{max}$  =
- (ix) The beam cross section shown in Figure (e) is made from elastic-perfectly plastic material. The magnitude of collapse moment is  $M_p =$

## **ANSWERS**

1. (ii) 
$$I_{yy} = 29.08 \text{ in}^4$$
;  $I_{zz} = 83.08 \text{ in}^4$ ;  $I_{yz} = -36 \text{ in}^4$ 

(iii) 
$$\beta = -60.26^{\circ}$$
  $\sigma_{max} = 19.44 \text{ MPa (T) or (C)}$ 

2. 
$$\delta_{al} = 0.569 \,\mathrm{mm}$$
;  $\sigma_s = 106.3 \,\mathrm{MPa}$  (C)

3. (i) 
$$\sigma_{max} = 22.4 \text{ MPa}$$
 (T) or (C); (ii)  $\tau_{max} = 14.4 \text{ MPa}$ ; (iii)  $\tau_{max} = 200.2 \text{ MPa}$ ; (iv)  $\sigma_{max} = 99.4 \text{ MPa}$ ;

(v) 
$$\tau_{max} = 35.8 \text{ MPa}$$
; (vi)  $F_{collapse} = 5.4 \text{ kips}$  (vii)  $depth = 1.2 \text{ inch}$  (viii)  $\varepsilon_{max} = 1200 \text{ } \mu$ ; (ix)  $M_p = 270 \text{ in-kips}$