M. Vable Advanced Mechanics of Materials: Variational and Energy Methods

Variational and Energy Methods

The learning objectives in this chapter are:

® Understand the concepts in variational calculus.

* Understand the application of variational calculus to obtain boundary value problems in mechanics of materials.
® Understand the use of variational calculus in approximate methods of Rayleigh-Ritz and Finite Element Method.

Basic Concepts

Variational calculus is the branch of mathematics dealing with finding the maximum and minimum values of functionals.
Functionals: Function of a function. Strain energy, the potential of work, and potential energy are all functions of the displacements
which are functions of the position coordinates.

1. We can walk to different points and measure the elevation— we will call it the d-process; so dx, ds, du represent the actual move-
ment along a path (curve).

2. We can conduct a thought experiment. For example, without moving, we ask the question, if we go to that point will the elevation
increase or decrease? This imaginary movement is called the virtual movement or the 3-process.

il "

Virtual displacement function

Actual displacement function

Independent set of functions
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If uq, wo, U3,...u;, are independent functions then above equation implies a;= 0 i=1ton

® Any set of independent variables (parameters) that describes the system geometry are called the generalized coordinates.
* The space spanned by the generalized coordinates is called the configuration space.
®* Any condition that limits the change in geometry in the configuration space is called the kinematic condition.

® Functions that are confinuous and satisty all the kinematic boundary conditions are called kinematically admissible functions.

Extremum and Stationary Values

Find minimum of ' = F(u,u,, ® o o +u)
We consider a virtual change in the configuration space, that is, space spanned by the independent variables uq, us, #s,...t,. The total

virtual change 6/ is the sum of the slopes multiplied by virtual change in each direction.

8F26F8u1+6F8u2+6F8u30 e o o + +6F
O, Ou, Oy

®  OF ig called the first variation of F. If /' is to be a minimum at a point in the configuration space, then this change of 6/ must be

ou
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ou,,
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ou. =0
o Uy tiq Ju “

I3
1

If 1y, 1o, Us,...uy are independent variables then we are free to move in any direction. So if we only walk in #; (all other virtual displace-
ment are zero) then we have 0F/0u; = 0. In a similar manner we can walk in each of the directions and conclude:

oF
O,

1

=0 i=1,2,3¢ o eopn
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* For stationary values we need the virtual displacement to be reversible.

irreveysible displacement

eversible displacement

oF =0

Functionals

®* A function u(x) is a rule of correspondence such that for all x in D there is assigned a unique element #(x) in R. A functional

Flu(x)] is arule of correspondence such that for all #(x) in R there is assigned a unique element Fu(x)] in £2 In other words, a
functional 1s a function of a function.

® Linear functional: /(o u + a,v) = o l(#)+ ay (V)

¢ Bilinear functional |B (o, #; + 0y, V) = 0By, V) + 0y By, V) B(u, vy +®,yvy) = o B(u, vi) +o,B(u, vy)

*  Symmetric bilinear functional: B(u, v) = B(v, u)

* yand v can be vectors.
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Work

Work is done by a force if the point at which the force is applied moves. If the point at which force F is applied moves through an infin-
itesimal distance o, then the work is defined as

W =F.du

A W)p = W) Wg t (W) =0

®*  Work done by a force is conserved if it is path independent.
®  Friction, permanent deformation are examples in which work will not be conserved.

* Rubber has nonlinear stress—strain curve. Work done in stretching rubber is recovered when the forces are released and the rubber
returns to the undeformed position.
Nonlinear systems and non-conservative systems are two independent descriptions of a system.

®*  Work is a scaler quantity. Work from different types of forces and moments can be added.
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Table 1: Work Expressions

Work

Axial

Torsion of circular shafts

Symmetric bending of beams

Bending of thin plates

Plane stress elasticity

W, = ijx(x)u(x)dx+ZZ:1Fqu(xq) = l(u)

Wy = | bd+ 37 T = 16)
Wy = _[pr(x)v(x)dx+Z’;;quv(xq)+Z’;’iqug—;(xq) = I(v)

Wp = [[p.Ge w(x, ydxdy = 1(w)
A

Wy = B[ [[Fr ) p) + F 6 p)v(e, ]dedy = 1, v)
A
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Strain Energy

® The change in internal energy in a body during deformation is called the strain energy.

® The energy per unit volume is called the strain energy density and is the area under the stress—strain curve up to the point of defor-
mation.

= _[VUO v U= j:c de Ty = j:e do

o 4 U, = Complementary strain energy density

U, = Strain energy density

1 dU,=ode

o

T

®  The units for strain energy density are newton-meters per cubic meter (N - mfm3), joules per cubic meter (J z’m3), inch-pounds per
cubic inch (in - Ib/in?), and foot-pounds per cubic foot (ft - Ib/ft®).
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Linear Strain Energy Density

1 1
Uy = 508 Uy = 7

® Strain energy, hence strain energy density, is a scalar quantity. We can add the strain energy density due to individual stress and

strain components to obtain the total linear strain energy density during deformation.

1

UO = E [Gxx ot nygyy +6,.8,, T Txyvxy + tyzvyz + szvzx]

Linear strain energy in symmetric bending of beams

Two nonzero stress components, 6, and 1. 6 =FEg and g, = —(d>v/dx?)

1{d*v 2 2 1 d*v ’
i j ~Egl dV = j [ —E(y—] dA |dx = jL E(QJ jAEy dA |dx = EJ‘EIZZ(E] dx
L

dv.

The strain energy due to shear in bending is Uy = (1/ Z)Itxy"/xy

The maximum shear stress t,, and shear strain 7,,, are an order of magnitude smaller than the maximum normal stress o, and the max-

imum normal strain .. Ugwill be two orders of magnitude smaller than /5 and can be neglected in our calculations.
Linear strain energy in bending of thin plates

2 2 2
T —ch _ov_ _ow _Ou v 50w
™ 2.2 W8y 6y2 gy ox dxdy
E E
By = (8.1 Vi, G, = (B TV ) T, = LFy,
(1 —vz) ¥y ¥y (1 —vz) ¥y y ¥

Linear strain energy in plane stress elasticity

£E.=06_—VO Fe =6_—-vo nyy:t}

XX XX yy yy yy XX

2 2
G, =Fle, + vsyy]f(l -v) B, =.E[8,,+ ve  J/(1-v7) Ty = Gny
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Strain Energy and bilinear functional form of strain energy

Strain Energy

Axial

Torsion of circular

shafts

Symmetric bending
of beams

Thin Plates

Plane Stress Elastic-
ity

1 (@)2 . _1 _1
S [RA(2) ax. U, = ZI[EAaa]dx = 3By, 1)
L L

B
ZIGJ(

d : 1 v, d'v 1

v _1 1 2 _ 1

ZJEI [dsz dx; Uy = 2j|:EIZZ—2 —2:|dx = 2B(V1,V2)
L

Uy = %j[GJﬂlﬂz}dx = 2B(b;, )
L

62 ’ 62 ’ 13, 3, 62 i
D w w W W W
i g el 2v 2{1 — )| — | ‘dxd
2:!;".{(6362} +[6y2J ! (6362}[6); JJF ( )[aanJ } "

2

2 B 2 2
gwow, Owow 6w6w 6w6w cw
15)” 21 22+ 21 22 [ 21 22 2 1J+2(1 aalaa drdy = B(Wl’wz)
5 LoxT ox cy Oy ox Oy ox’ 8y yexck
R e
e &2 dxd
21 -v* ” {(5 ox/\8y/  \dy By a ¥
on, 0 On,0v, Ou,ov 6V6 _v)/0 ov\ /0O %,
> .” {_ul_u2+v(_u2_l+_ul 2 V2}+(1 ") ul 1)( X sz]dxdy
2(1 -7, Ox Ox ox dy Ox Oy 6y oy 6x dy Ox

1
- EB(HI’ Vls uza Vz)
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Virtual Work

® Virtual work methods are applicable to linear and nonlinear systems, to conservative as well as non-conservative systems.

|The total virtual work done on a body at equilibrium is zero. |

® Virtual work implies it is not actual work but work done by actual forces in moving points through viriual displacements, or, virtual
forces moving through actual displacement.
oW =0 OW o = OW
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Minimum Potential Energy

®*  We define the potential energy function as: Q = U—- W
[/ is the strain energy and I is the work potential of a force.

* The “work potential of a force™ is associated with conservative forces only and implies that there is a potential function from which
such a force can be obtained.

*  Minimum potential energy and methods derived from it are applicable to conservative systems that can be linear or non-linear.

The internal virtual work is the variation in elastic strain energy during deformation: 6/, . = 8U

The external virtual work is the variation in the work potential of the force: 61V, = 8l

SWm.t*8Wext =dU-doW =20 OI‘

The virtual variation in the potential energy function is zero—which occurs where the slopes of the potential energy function with
respect to the parameters defining the potential function are zero.

Of all the kinematically admissible displacement functions, the actual displacement function is the one that minimizes the potential
energy function at stable equilibrium.

There are many kinematically admissible displacement functions, and there is no requirement that these functions satisfy the equilib-
rium equations or the boundary conditions on forces and moments.

* The actual displacement is kinematically admissible and satisfies all the equilibrium conditions and the static boundary conditions.

® If we choose an arbitrary kinematically admissible function and calculate the potential energy function, the value so obtained will
always be greater than the value of the potential energy function at equilibrium.

® The better approximation of displacement function is the one that yields the lower potential energy.

® The greater the degrees of freedom, the lower will be the potential energy for a given set of kinematically admissible functions.

1
Q = EB(M, w)y—1I(u)

10
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Mathematical preliminaries

Transfer of derivatives from one function to another inside an integral is done by: integration by parts in 1-D; by Green s formula in 2-
D; and by Gauss divergence formula in 3-D.

Integration by parts is given by the equation below.,

aq

J e — o) [ s

The Green s formulas is given by the equation below.

ij%dxdy = §fgdyffg%dxdy jjfg—)g}dxdy = &fgdxjjg%dxdy
4 I 4 y 4 =

where f(x, ) and g(x, 3) are two continuous functions in the area 4 that is bounded by the curve T

y
N
] NG
de "
X 3 5] A

(&)
We can relate the Cartesian coordinates (x, ) and to normal and tangential coordinates (71, ).

x = necos® —ss5ind y = nsinf + scosO
i1 = xcosO + ysin 5 = —xsin +ycos
We define the direction cosines of the unit normal as
_on _ _Os _on . 08
n, = — = cost = — n,= — = ginh = ———
Ox oy Yo oy ox

11
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If a point is restricted to the boundary, then dn = 0
dx = (—sinf)ds = fnyds dy = (cosQ)ds = n.ds

g _ of 8 dudi — or
jjf%dxdy = {)(fg)nxds—jjgadxdy ”fg—ydxdy = &(fg)nydy—”ga—ydxdy
A r A A r

. LOf _Ofon +6f Os 8f 8f of _ dfon +6f as 8f 6f
ByChuale: 3x Ondx 0Osdx oOn % 65 @ ondy 0soy on fly* 65
on

X

o0 133 H on 00 00 H
== ond(g) - nlz) - (7)) 5 en(m) - nlE) -
s Js s V. Os Js o8 R,

where, . is the radius of curvature of the boundary at the point under consideration and can be function of s.

Gauss divergence formula is given by the equation below.

m[ ay 62]011/ ”[unwynywznzm

where, uy, u,, and u; are the components of a vector function which is Contlnuous with continuous first derivatives in a region 7'
bounded by a smooth surface S; and #,. n,, and n, are the direction cosines of a unit normal on surface S. To develop formulas in which

we transfer derivatives x, 3, or z from one function to another we let each of the components of # be equal to product of two continuous
functions fg while the other two components are zero. This produces the formulas below.

(e - Jftn s~ [[}%r

J{J‘%&W = Zgj.fgny dA — “T.jfg_idy

j{j%gdv - £ [ren, a4 | i{ jf%d}/

12
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Stationary Value Of A Definite Line Integral

Notation: u(o) = u u(i) = du/dx u(ﬁ) = :;1’21'/1/:;17362 e o u(r) = d u/dx’

Stationary value of a functional with first order derivatives

1Gey = [P H@, 1 %) de

First variation: 8/(u) = SIZH(MU), u,x) dr = IZSH(MU), u,x) dx = ﬁ |:—8u(i)+—8ui| dx

Function and derivative are independent in virtual displacement.

®* Once we have considered virtual displacement, we are now on a specific curve and function and its derivative are related are no lon-
ger independent. We perform integration by parts.

b
8I(u) = Iab[aﬂ d [aiﬂb‘u WS W R

du  dx 6u(i) 6u(i)

a4
Possibility I: We meet the condition 8/(x) = 0 in the average or overall sense. This lead to approximate methods as the
condition 1s not satisfied at each and every point between a and 5.

Possibility 2: We require that 3/(z) = 0 at each and every point between a and . This results in boundary value problem.
®* During the process of variation, the function and its derivative are independent.
® After the process of variation, the function and its derivative are no longer independent.

® Integration by parts will generate an expression only in terms of variation of the function.

Boundary Value Problem

Differential Equation: of_d ai =0 a<x<b
ou  dxl 5"

Boundary Conditions: [6H/6u(i) =0 or ou = 0] atx = gandatx = b
The above equations are called the Euler-Lagrange equations.

13
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Stationary value of a functional with second order derivatives

1) = [, o, x) dx (.10

We take the first variation 3/(x) and then by successive integration by parts we transfer derivatives.

810y — [ {aH_m)au(”) +5£m8u(") +gi;8ui| e
ou Ju

b & 2
oH +{_‘3H _ i(aH( HJ }Su + f’{aﬁ’ i(aH( I_J ; dz(aH( ﬁ)naudx -0
) au(t) dx\ 5y, @ ou  dxi gy, i k@u

(#)
6uu08u

3I(u) =

Boundary value problem

Differential Equation:

2
oH d(@H)J+d(6H J_O o

ou dx au"! dxzkéu(ﬁ
6H__ =0 or 5u” = 0
ﬁu(”)
Boundary Conditions: and atx = gandatx = b

6H_ _i[@H_J =0 or éu = 0
au(l) dx au(”)

14
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Generalization: 1(x) - [(H@", 2", 4",
4]

, u(l), u(o), x) dx

Differential equation:

dz(aH d3(aH

oH i(aH J+
o' AoV

d5* Kau(z)] R dx3kau(3J

+(-1)"

d'| 6H
=0
dx’ (%i(r)

Boundary conditions atx =g and x = b

d

_{6]{ J
iy

(2) (r—1)
_(%Jd_[@i} . o sy l[aLJ_o
dx au( ) dx au( ) dx(r ) au(r)

Ay b2

A

ol gy dx Y

r—3)
(%T_B;J + o e + (—l)r d( =
au( ) dx(r )

+(-1)

G
ou’
[aH J L
au(r)

oH
PYE

or

or

or

or

ou =0
Su(l) =0
sul? =0
Su(r_l) =0

ba =

If the highest derivative in the functional is 7, then the differential equation will be of order 2r
The boundary conditions with the variation symbol of 6 have derivatives from 0 to #-1. These quantities must be continuous and are

called primary variables. The boundary conditions are called kinematic boundary conditions or essential boundary conditions.

The boundary conditions that have derivatives of the functionals that vary from r to 2#-1 are our internal forces and moments and

are called statical variables or secondary variables. The boundary conditions on these variables are called statical boundary con-
ditions or natural boundary conditions.

are applicable to any functional.

If the functional contains more than one variable (%), say u,, then we could replace u with #; in the above equations.
If the functional is quadratic in # and its derivative, then the boundary value problem will be linear. However, the above equations

15
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C7.1  Obtain the boundary value problem for symmetric bending of beams using variational principles. Assume there are only dis-
tributed force Py and no concentrated force or moment acting on the beam.

16
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Stationary value of a definite area integral

® In stationary value of an area integral the transfer of derivative is accomplished by using Green’s theorem.

Stationary value of a functional with first order derivatives

(u) = jIH(u’x, Uy Uy X, V)dxdy where u, = ou/ox U, = cu/ oy
A

* A subscript without a comma implies a component and with a comma implies derivative.

SI(u) = Jl f [@%})8% (aH ) (aﬂjﬁu}dxdy
SI() = if’[gf ; (g’z) :|8uds+jj|:(aH) 8x( ay@f ﬂaudxdy _ 0

OH 0O (6H) 0 (6H) B
ek A [ )
du  ox\Ou dy\ou

Diftferential Equation: x,yin R

Boundary Conditions: @fg n,t @f)) n, =0 or ou =0 x,pyon S

17
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C7.2  Obtain the boundary value problem for an elastic plane in plane stress with only body forces.

18
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Stationary value of a functional with second order derivatives in rectangular coordinates

Green’s Formula

;[If%dxdy = ffgdyjjg%dxdy ijf(g—idﬁcdy = ifga’xijg%dxdy b

1 a 2

2 2 2 2 2
I(u) = IIH(u,xX’ Uy Uy Uy U4y Uy x, y)dxdy where U,y = O u/0x Mgy = o u/oy gy = 0 u/0x0y

A
- 6H) (8H ) (GH ) (GH ) (GH ) (8H )
= — |8u+|=— + = +|=— - -
81() Jj[(ﬁu S (g Joe s+ (G Jou (=)o (= o = (G S sty
2 2 2
Differential Equation: il )Jr & (ot )+ g fol )_ﬁ(aij _E(@i) +(8—H) =0
PRI 6);2\6“,)0? Oxdy\ou ./ dx\ou /) 0y\ou ou
Boundary Conditions
gH =0 or ou, =0
- g
o at x = 0andx = a
i(_@H )+E(—6H )—(ai) =0 or ou = 0
Ox\ou ./ Oy\ou ./ \Ou
o _ 0 or ou =0
Ou ¥
| at y = Oandy = b
E(@i} +2(ai) 7(6&) =0 or ou = 0
ay\ou ./ Ox\Ou du ;

Corner Conditions: (6H ) =10 or ou, = 0 kE=1t04
8u’xy &

19




M. Vable Advanced Mechanics of Materials: Variational and Energy Methods

C7.3  Obtain the boundary value problem for a thin homogeneous plate bending with only transverse distributed forces and cor-
relate the variables to those introduced in plate theory.

20
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Boundary value problem for geometries with curvilinear boundaries

I(u) = IIH(M’H, Uy Uy U o U Uy Uy X V)dedy
A

O OH oH ot O 5
81(1) H[( ) +( )Su,xy +(Z yx)Su’yx +Z yy)su’”’ +(Z x)au,x y (W)E)u,y # (a—J;DSu}dxdy

m (6H )n2+(aijn +(aijn n m,_ = _(_8H _H )n n Jrl(mz—mz)ai
e ou ¥ \ou ou ry i Ou Ou Y o2v Y ou

3xy S XX :yy ,.Xy
6H) a(aﬂ) 10 oH (6H) 18 oH a(aﬂ) om,,,
= |l=—]-= — —= = + V. =q +_—
1 ((’%{:x Ox (3u:xx 2@(61{@? T~ ou 25( u ) oy au:yy T~ 1T 47y n = Os
73
n
e We represent the discontinuity in m,, at each corner as (Am,,) .

0 4,
Differential equation: O Dy (ai{) =0 xyin A
u

ox oy \0
m, =0 or 8@—3‘3 =0
Boundary Conditions: x,yon I
and
V.= 0 or 6u = 0
Corner Condition: | (Am,,). = 0 or Ou x,y on comer L',

2 2 2 2
6(6]{ oH ) a(aH )(nxny) (6]{ aH )nx—ny (6]{ )2nxny
— nxny+ 3 = —

EvaluationofV : V =¢q — | —— —— ! S e
o boOs\ou,, Ou,y Ds\OU . Ou . Ou Ou ) R,y

® If the functional contains more than one variable then all the above equations must be written for each variable.

21
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C7.4  Obtain the boundary value problem for thin plate bending with only transverse distributed forces and correlate the variables
to those introduced in plate theory.

22
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Stationary value of a definite volume integral

(u) = ”IH(ujx, "y U U, X, Y, 2)dxdydz where U, = Ou/0x Uy = Ou/ 0y u, = O0u/0z

T
oH ) (6H ) (6]{ ) (6H) ]
- - + =
. ou 6u:y Su:y u ou e ou |dxdydz

ORI [

100 ({2 2, 2 Yo ({2~ 2 (S22 ot -

Boundary value problem

Difterential Equation: i fi(aH )fi(aH )fi(aH ) =0 x,y,zin T
u  Ox\ou ./ Oy\ou ,/ &z\ou,

Boundary Conditions: (?jxjnx % (25)})?1)} + (gfz)nz =0 or dou = 0 X, y,zon 8

® If the functional contains more than one variable then all the above equations must be written for each variable.

23
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Rayleigh-Ritz Method

* Rayleigh-Ritz method is applicable to conservative systems that may be linear or non-linear systems.

* Rayleigh-Ritz method is a formal process of minimizing the potential energy using a series of kinematically admissible displace-
ment functions to produce a set of algebraic equations in the unknown constants of the series approximation.

n
“ = 3 G
where, fj are a set of kinematically admissible functions and q are constants to be determined.

* CJ are the generalized coordinates as the variation of them represents the variation of the displacement curve

Q = %B(”p Uy) — (1) uy(x) = ijl Ci(x)  and  uy(x) = Zzzl Cia(x)

71

Bl 1) = Ty Ty GO G0 100 = I, G = 7, 1)
| — 7 .
Q=521 21 GCBGW-2, GG

We take the first variation of potential energy and set it equal to zero to minimize the potential energy.
1 1 43 i3 3 43
32 = 37 X BCCBUES +CICBGI - X SGIR) = 30 Y, 3GIBG I, = 0

1

Zk:1B(fj’fk)Ck_l(]3) =0 j=1lton
Matrix Form: [K[{C} = {R} where Ky = B(5) R, = I(f)

[K] is called the stiffness matrix and because the bilinear functional is symmetric, the stiffness matrix is symmetric.

Potential Energy at equilibrium: Let CJ* represent the solution of the algebraic equations (the values at equilibrium), that is
7 £
S BLf)Ch = 1)
o - Iy cipy - Iyt k- ey - w2
_221:1 7 1G) _221:1 Y _2{ yAR} = -

® At equilibrium, the potential energy of the system is negative of half the work potential.

24
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C7.5 Abeamandits loading are as shown below. Use the Rayleigh-Ritz method with one and two parameters to determine the

deflection at x = 0.25L, x = 0.5L, x = 0.75L, and x = L, and the potential energy function. Compare your results with the analytical solu-
tion. Assume that £/ is constant for the beam.

25
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C7.6 A square plate is uniformly loaded and is simply supported on all sides as shown. Using Rayleigh-Ritz method determine
deflection w at the center of the plate and the potential energy for each case. (Example 6.5).
Casel: '(x,y) = C,sinn(x/a)sinn(y/a
CaseIl: -, y) = Csinn(x/a)sinn(y/a) + Cysinn(2x/a)sinn(y/a) + Cysinn(x/a)sinw(2y,
Case II: -, y) = Csinn(x/a)sinn(y/a) + Cysinn(3x/a)sinn(y/a) + Csysinn(x/a)sinm(3y,

Y Y =
Simply Supported 5, -

§ Po
& %Y .,

,%
> 5
4 S
Simply Sgpported

=/

26
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Nonlinearities

®* (Geometric nonlinearities arise from large deformation.
® Material nonlinearity arises from the nonlinear relationships between stresses and strains

* Contact nonlinearities arise when the contact region between two surfaces change due to applied loads—it requires modifying vari-
ational equations and will not be considered any further.

Geometric nonlinearity

® Lagrangian strain is computed from deformation by using the original undeformed geometry as the reference geometry.
® Fulerian strain is computed from deformation by using the final deformed geometry as the reference geometry.
Material nonlinearity

The only material nonlinearity we will consider is the one in which stress-strain relationship is given by the power law model given
below

{ Eg" g0 { Gy" v=0
G = and %=

E(e)t £<0 Gyt ¥V
The strain energy density given below

n+l1

7 Laem 21 >0 P a1 >0
U_{ e /(nt1) g U_{ Y /(1) ¥

E()" '(n+1y 8<0 G 1y ¥<0

27
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(7.7 Lagrangian strain with moderately large rotation for symmetric beam bending 1s given as

2
o = B (LY
XX dx 2 d
Assume the displacement field 1s #(x) = u,—ydv/dx, where 1, and v are the axial and bending displacements that are function of x
only. All assumptions of classical beam theory except small strain approximation are valid. p,(x) and p (x) are the distributed loads in x

and y directions. Obtain the stress formula and the statement of boundary value problems for displacements #,, and v.
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(C7.8  The hollow square cross section of a beam is shown below. The stress-strain equation of beam material is given by

o = Fe"> The beam is subjected to a transverse distributed force p,(x). Obtain the boundary value problem for the beam deflection v
if all assumptions of classical beam are valid except for the Hooke’s law.
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Finite Element Method (FEM)

®  Qur objective is to show how Rayleigh-Ritz method can be used in formulation of one of the versions of the finite element method.
Two versions: the stiffness method and the flexibility method.

30 kN Stiffness method: Displacement of pins as unknowns, write the equilibrium of forces
at each joint to obtain algebraic equations. ---Potential Energy
20 G H
% Flexibility method: Internal forces in members are unknowns, write compatibility
equations at each joint to obtain algebraic equations.---- complimentary potential
s energy.
B 5 z
= =
Ié G
’:ﬂf 2 m—>=<— 2 m—I>

® Rayleigh-Ritz method--- kinematically admissible displacement functions at the global level.

®* FEM --- kinematically admissible displacement functions defined piece wise continuous over small (finite) domains called ele-
ments.

* The kinematically admissible functions are called interpolation functions.

® The constants multiplying the piece wise kinematically admissible functions are the displacements of the nodes.
* The representation of a structure by elements and nodes is called a mesh.

* A mesh with boundary conditions, applied loads, and material property is called a model.

Potential energy is a scalar quantity and can be written as the sum of the potential energy of all the individual structural members 3Q""
as shown below.

Q = ZT: i SQ@ n number of elements (6.2)
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®*  We develop matrices at the element level in a local coordinate system without regard to how a member is used in the structure. The
individual local matrices are called element stiffness matrices.

® The clement stiffness matrix are assembled to form the global stiffness matrix of the entire structure.

* This perspective of reducing the complexity of analyzing large structures to the analysis of simple individual members (elements) 18
what makes the finite element method such a versatile and popular tool in structural (and engineering application) analysis.

* Lagrange polynomials ensure continuity of the function (displacements) at the nodes.
®*  Hermite polynomials ensure continuity of the function and its derivatives at the nodes.
®*  When the continuity is ensured at the nodes and the boundary then the element is called a conforming element.

*  When continuity is only ensured at the nodes but not ensured across the boundary then the element is called non-conforming ele-
ment.
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Lagrange polynomials in one dimension

1 )
|—>u( ) I—PH |_'”(l) |->u(2) I—>H(3)
L = @ i L J @ ® D)
x7 Nodel . Node 2 ¥y Node 1 Nogde 2 Node 3
5 X2 =
=
- - #‘—I
linear element quadratic element

Linear Element: u(x) = C; + Cyx wlx;) =L +Caxq = u

ity = g P % (%QJ o il ) N S 05 - (:"‘2)
u(x) = u (x]—x)Jr" x, =u 'gx)+uTB(x) = Z‘,:lu £(x) £(x) = ",
: . - v 2 2 (1)
Quadratic Element: u(x) = C; + Cyx + Cyx u(x) =5 ue(x)
0 _ M st J 1 25§
ulx) = 3w g0 = u 55 = {0 i#]
Node 1 Node 2 Node 1 Node 2 Node 3
g ® G . D)}
1 I 1 | |
‘fi(r) \I o ﬂf‘l(x) \ I * i‘l (x) =
I = r"-—-—_——-"'l =
I
50 1 (1) |
o | EOL
| 1
S5(x) /
| |2 ) =

u(x,) = C;+Chxy = e
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i#£j

Continuity of displacement

-7 Discontinuity of derivative = — — __ .
u i
" ’/Nus " s 3 "y s
@ ® D) @ _© . ®
1 ) 3 1 2 3 4 5
element 1 element 2 element 1 element 2

Natural Coordinates

®* Non-dimensional coordinates are called natural coordinates in finite element method.
£ = x/L 0<g<1 or £ = 2x/L -1<&<1
® Natural coordinates used for approximating the geometry as well as the generalized displacements.
1 n
Curved Beam: x = Zizl x,8(%) y = Zizlyi_zg(g)

* Isoparametric elements are elements in which geometric transformation and the generalized displacements are approximated by
the same interpolation functions.

® Natural coordinates used in numerical integration.
Linear L&) =1-§ £(&) =&
Quadratic £©) = (1-91-28) £(&) = 41-8)¢E £(8) = —§(1-28)
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C7.9  Obtain the quadratic Lagrange polynomial using the natural coordinate shown below.

Node 1 Node 2 Node 3
(= :

v ©
£ =-1 |_>g E=1
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Vector arithmetic

® Vector arithmetic provides a simple way of obtaining formulas for areas of triangles and volumes of tetrahedrons in terms of coordi-

nates of points which we will use for Lagrange polynomials in two and three dimensions.

AxB . The cross product 7 x B results in a vector whose magnitude is the area of the parallelogram and

direction is perpendicular to the plane formed by the two vectors. The area of the triangle is half
of the area of parallelogram formed by the two vectors.

4-= (xz—x1)?+(YQ—Y1),? B = (x3—x1)?+(y3—y1)}'
Area of triangle 1-2-3 = AxB/2 = [(xy —x (3~ — (3 —x )y — ¥/ 2

The scalar triple product (2 X E) o O results ina quantity whose magnitude is the volume of the
parallelepiped and the volume of the tetrahedron is one-sixth of the parallelepiped. The order of

multiplication in cross product is in counter-clockwise direction with respect to the positive z-
direction.

4= (xz—x1)?+()”2‘)’1)?*(22—21)}? B = (x3—x1)?+(y3—y1)}'+(23—21)75
g = (x4—x1)?+(y4—y1)}'+(z4—21)75

; ; (xz—xl) @2*)’1) (22*21)
Volume of tetrahedron 1-2-3-4 = 8(2 xB)e C = : (x3—x1) (r3—y1) (23—12)

(x4—x1) (vy—3) (23—29)
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Lagrange polynomials in two dimensions

Linear: u(x) = Cy+Cix+Cyy
The triangular element is the simplest element that can be used for modeling regions with curved boundary.
® Area coordinates are natural coordinates used in triangular element.
— AI
4

Ag

A

L
g A

Ly

|PJ® PK| = 2(Area of triangle PJK)

Ap = [(;=x) g —y) - (g —x)0,-¥)1/2
Ay = [(xg =) —y) - (=) (yg-y)1/2
Ag = [(c=x); =)= (x; =)y —»)]1/2
A= [Ce;=x)Vr -y - (xK_xI)(yJ_yf)]/z

oL; vy L —xy

= 24 oy 24 e Xjp = Xy—xg and ype =y, -yg
oL;  yxp oLy _ —xg

24 & 24 e Xgp = Xg—xp and ygp;=yp-yr
oLy vy Ay  —xp

24 oy 24 here Xy =xp=x; and yp=y-y;
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Linear .,e's'1=JLIr .%ZLJ .e3=LK
L = L(2L;-1) 8= LA(2L;-1) L = LiA(2L—1)

Quadratic
£ = ALL, £ = ALy £ = ALyl

K

Linear Quadratic Cubic

m!n!p!

m!n!p!
(m+n+p+2)!

menp _ myite P -
£IL,LJLdedy = (24) fbaLILJLK ds = (b-a) e
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C7.10  Obtain the cubic Lagrange interpolation function for triangular elements for nodes 7, 8, and 9.
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Element stiffness matrix and right hand side vector

Method 1: X, = B(f,, ;) R, = I(f).

Method II: More than one degree of freedom at each node.

A §
Element displacement vector: u(e)} = {u(l), u? u(n)}

E

e e e e e T e e e e T e
Element potential energy Q@ = o _ple Ut = %{u( )} [K( )]{u( )} e = {R( )} {u( )}

e 1 e T e e e T e e 1 e T e e T e e T e e
e L N T R L N e T T T U (S B T DTV R AR W S TE A
sprer - () T'r oo ) ( ) (£) ) azU(e) (D ()

e e e e i . i
= {06u '} [K "]{du Z . Z ou K_U.Su - —au(i)aug)ﬁu ou

_ou o'
v St P, D ! St
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C7.11 Obtain the element stiffness matrix and the element right hand side vector for an axial member using quadratic Lagrange
polynomials. Approximate the axial rigidly 4 and distributed load p, with constant values that exists at the center of the axial rod.

Also assume the left and right end nodes have a concentrated axial forces FUand F3), respectively.
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C7.12  Anelastic plane of thickness / 1s in plane stress and subjected to body forces I (x, y) and I Wx, ). Fora triangular element,

using linear Lagrange polynomial, obtain the first row of the element stiffness matrix and the right hand side vector. Approximate the
body forces, the material constant, and thickness with constant values that exists at the centroid of the triangle.(Example 6.7)

41
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