M. Vable Advanced Mechanics of Materials: Introduction to Elasticity

Introduction To Elasticity

® FElasticity studies mechanics variables (displacements, strains, stresses, internal forces, and moments) variation with location of
point on an elastic body.

® In mechanics of materials the variables are approximated across the cross section or thickness (plates and shells) and integrated
cross the cross section or thickness.

The learing objectives in this chapter are:
* Become familiar with equations of elasticity and the Airy stress function.

® Understand the application of equations of elasticity to rotating disks and torsion of non-circular bars.

Basic equations of elasticity
Strain-displacement relationship.

Constitutive equation: Generalized Hooke’s Law.
Equilibrium equations on stresses.

Compatibility equations on strains to ensure single-valued displacements.
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Strain-Displacement

Cartesian Coordinates

The strain displacement relationship are given by
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Polar coordinates

1, and vgare the displacements in the r and O direction, respectively

Compatibility equations

® There are six compatibility equations which ensure that the displacement field obtained from strain fields are single valued.
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2

: ., 0 : :
| Starting with % derive the expression below.
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Constitutive Model: Generalized Hooke’s Law

B = [cxva(cnycmZ)]/E Ty, = ’ny/G
_ _ _ E
Syy - [nyfv(czz—i_cxx)]/E 'sz - JICJJZ/C; G - 2(1 +V)
8 = [0, V(0 T 0,,)/E Yoy = B G
plane stress
Ee,, = Oy~ VO,, BBy = Oy V0, Gy = "y
) 2
Oy = Llg T ve, 1/ (1-v7) G, = Elg,, tve, ]/ (1-v7) Ty = G'yxy
plane strain
20re,, =1 =) T — NGy 2Gsyy = {1 =)0y~ w6 nyy = Ty
2G 26
o, = a —2v)[(1 —V)Ey, T vE,] B = a _2V)[(1 —V)e,, T ve] Ty = Oy
, v—=>v/(l+v)
Plane Strain Plane Stress
G—>G
Alternative:
8Gs,, = (k+1)o,,.—(3 ~ K)o,
SGSW = (xkt Do, —(3-x)o,,
where,

(B-—v) Plane Stress

Kk =<{(1+v)
3 —4v Plane Strain
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Equilibrium equations
Plane Stress Cartesian Coordinates

F, and I}, are the body forces acting at the point and have the dimensions of force per unit volume.
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Plane Stress Polar Coordinates
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Boundary conditions

: ! Py Sx _Gxx Ty

N (n} =4 n 5y =45, 61=|t. o
x‘\&\ “ y S yx  Pyy
%\\.b\\\\\ n, Z Tz Y2
NN ' ’

{5} = [olin

Ry, A, and n, -- direction cosines of the unit normal to the surface in the x, y, and z direction.

S Sy, and S, -- specified traction in the x, y, and z direction.

u,.V,, and w, -- specitied displacement in the x, y, and z direction.

U = U, or Gxx”x+1xy”y+1xz”z = g
= + - =

vV =g or Tyl T O, T TR Sy

W= w, or tzxnx+tzyny+czznz = S
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Co6.2 Starting from the equilibrium equations of elasticity obtain the equilibrium equations of mechanics of
materials for axial members and symmetric bending of beams. Assume area of cross-section 1s a constant.
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Axisymmetric problems

(©).

Axisymmetric problems are those in which the loading, geometry, and material properties are all independent of angular location

® the displacements, strains and stresses should also be independent of 6.

: ou u, 10vq 10U, Ovy Vg
Polar Coordinates: ¢, = 5’” Eag = 7’”+ ~35 Yo = ;%’#5 —=
6Grr 1 61?”9 G, —Opp
— Tt —_—tF =10
or  rod r
Axi " ou, du, u,
xisymmetric: g, = — = — Eapn =
Y =@ dlr %
d_Grr_,'_Grr_G@@_i_F = 1l
dr ¥ "
Plane Stress Axisymmetric problems
E du
Sy — 2 [Srr+vg 9] 7 [@r—i_vf}
(1-v") (1-v7")
E B u du
Ggg = > [£00 T ve,,] 3 [f+v5rj|
(1-v7) (1-v")
2
d du oy
_urJrl_r_&‘Jrgl_V)F =0 or

dr2 rdr r2 B r

d[ld(mr):IJrngVz)Fr =10

drLrdr

General Solution:

u, = (“r’)h + (ur)p

Cy
(u,), = Cyr+ —
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C6.3 A thick cylinder (plane strain) is subjected to internal and external pressure as shown. (a) Show that the

stresses and radial displacements are given by the equations below. (b) Plot the stresses as a function of r for Case I:
po="0and Case Il p;=0

2

) -

R R r

2.2
R°R(p. —
Sy = { N 3 i °)}

1 2
Cpg = [ (poRo PR+
R R

2.2 -
Ri Ro(pi _po)
2

r

{—(1—2v)(po Sy +M

u, = =

¥ 2
2G(R. - RY)

10




M. Vable Advanced Mechanics of Materials: Introduction to Elasticity

Internal pressure only: p, =0

R I (R O

(R/R) —1 (R,/R) —1
1.0 -
05
0.0 I ! 7 T T | I'/Ri
_ 6 8 1

-05

- 1.0
* o, 1s compressive at all points with a maximum compressive value of p; at the mner surface.
®*  ogp 1s always tensile and its maximum value is also at the inner surface.

g = —2 a2+ (%))

2G[R/R)-1]

* acircle of radius » will enlarge to a radius of (» + u,) due to the internal pressure.
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External pressure only p; =

0.0 7
-05
-10
-15 !

-20

2 2
Do i P i
B = | ————3 17—2 T e R — 1+—2
1—(R,/Ry) r 1-(R,/Ry) r
| | | I |
2 4 6 8
i 2rr
P,
- Coo
Py

Ogp 1s always compressive and its maximum value 1s at the nner surface.

a circle of radius r will shrink to a radius of (r-u,) due to the external pressure.

12

|

Pt
2G[1 - (R,/Ry)’]
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G, 18 compressive at all points with a maximum compressive value of p,, at the outer surface.
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Co6.4 A small steel cylinder with no axial forces has an mside diameter of 100 mm and an outside diameter of
300 mm. The steel has a modulus of elasticity of E = 200 GPa, Poisson’s ratio of 0.3, and a vyield stress of
Oyield = 200 MPa. Determine the maximum internal pressure if Von Mises stress is not to exceed yield stress.

13
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Rotating disk

®* A grinding wheel or a disk brake can be modeled as a rotating disk.

A thin (plane stress) disk is rotating at a constant angular speed o. /¥, = poozr

2
d |:l d (rur):l + gl%)(pQZF) _—

drlrdr
2 2,3
) (A -v)pe )()
Fpart E b
Displacement
. 2 Z3
v = C.rp o2 A=V )(po )
P Ty SE
Stresses:
Ch(l -
B = i 5 |:C1(1 +v)— 2( 5 V):|—(3;V)pc02r2
(1-v") r
CH(1 -
Gog = £ 5 |:C1(1+v)+ 2 5 V):|—(1+83V)p032r2
(1-v") r

Boundary Conditions
1. A solid rotating disk: The outer boundary 1s stress free, thus o, .(» = R ) = 0. For solution to be finite at the center (r = 0) of a

solid disk requires C, = 0.

2. A rotating disk with a hole: The mner boundary (r = R;) and outer boundary (r = R) are stress free. Thus the boundary conditions
are 6, (r=R) =0andc, (r=R)) = 0.(

3. Arotating disk bonded on a rigid shaft: The outer boundary is stress free and the point on in the inner boundary cannot displace.
Thus the boundary conditions are # (r =R,) = 0 and 5,(r =R,) = 0.

14
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C6.5 The maximum rotational speed at which a grinding wheel can operate 1s called the “bursting speed,”
since if this speed 1s exceeded, maximum tensile stress will cause the wheel to burst. Consider a grinding wheel with
inner radius a, outer radius 2a, Poisson ratio v = 1/3, and modulus of elasticity . Obtain a relationship between
the burst speed o, and the maximum allowable tensile stress 6., 10 terms 7, a, and E. Assume that the grinding

wheel 1s mounted on a rigid shaft.

15
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Airy Stress Function

® Airy stress function is chosen such that the equilibrium equations in absence of body forces are implicitly satisfied by the stresses in
two-dimension.

62 62 62
_ Oy _ Oy _ 2w
o L (o] = __ T T = _|
o oy’ et xy {axay ]
— ; oG, Ot ot,, 0o
Equilibrium equations: —*+_2% = 0 U+ =90
ox  dy ox oy
62 82
i . g £
Compatibility equation: 2” 2yy = 2y
dy 55 ox0y
4 a4 4
a:'l’Jrz ‘2"2+a:|":0 vihg = 0
ox Ox 0y~ oy
2 2
*  Harmonic operator: V* = L
2 2
ox Oy

* Bi-harmonic operator v = viv?

*  Applicable to plane stress and plane strain.

Solution by polynomials

® Airy stress function  is represented by a polynomial.
* For stresses to be non-zero the lowest order of polynomial is quadratic.
® Quadratic and cubic polynomials implicitly satisfy the bi-harmonic operator.

¢ Relationship between constants must be found for polynomials of 4th and higher order for the polynomial to satisfy the bi-harmonic
operator.
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2
Quadratic polynomial w = az% + byxy + 02%

Stresses: O, = Cy G, = a T, = —b,

® Constant stress state irrespective of the shape of the body.

Tractions: 8, = cznx—bzny Sy = —bznx+a2ny

® Ifby =a,=0, and ¢, = & then we have uni-axial tension.
® Ifby;=r and ay =c, =0 then we have state of pure shear.
* Ifby, =0, and a, = ¢, =c then we have the hydrostatic state of stress, 1.e., normal stress in all directions is the same .

* Ifb,=0, and ay = -c,=c then we have state of pure shear in a coordinate system that is 45° to the x and y coordinate system.

17
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Displacement from Strains

The strain displacement relationship in two-dimension are given by

_ O _Ov
Exx ox Eyy @ Txy

B _ Ou , Ov
T 5
'y Ox

The procedure is as follows:

1. Integrate the strain g . with respect to x and add function f{y) to obtain displacement u(x, y).

2. Integrate the strain €y with respect to y and add function g(x) to obtain displacement v(x, 7).

3. Substitute u#(x, 3) and v(x, ) into the strain expression - Write all terms that are functions of x on one side of the equal sign and

all terms that are functions of'y on the other side of the equal sign. This implies that each side must equal to the same constant. Inte-
grate to find f(3) and g(x).

4. The ordinary derivatives of /(1) and g(x) in the above step can be integrated. The constants of integration correspond to rigid body
mode and are determined from the boundary conditions.

18
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Co6.6 Obtain the displacement field for the constant stress state given below.

o,, = Gy, = 4 Tyy = —b,

19
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Rigid body motion
Displacements
M(JC, ,V) - [(KSEI )02 B (38_GK)a2j|x + Gy + By

_ b
V(JC, J’) = I:(Kggl)al o (3SGK)CZ]y o sz * ay o Bx

* o, and o, represents translation in the x and y direction, respectively.

* the constant [3 represents rigid body rotation.

* To eliminate rigid body motion we need to fix the body at least at 3 points, with one point that is not co-linear with the other two.

20
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C6.7 Consider the umaxial tension 6., = o 1n plane stress and obtain the displacements for the four cases

shown. The rectangle 1s 2a units long in the x direction and 2b units longs in the y direction.

Case [ Case II

Case III

21
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3
az 3 by

. . - 2. .9 2 b4
Cubic polynomial Y= —8 =+ =% P bk iy
6 2 2 6

Stresses: 6. = (3% + d3p) G,y = (a3x+b3y) Ty = ~{(b3% +C3)

Tractions: S, = (c3x +dayy)n, —(byx + Cay)n,, Sy = (byx+egy)n, + (c3x + dyy)n,
*  Stress components are linear in x and y irrespective of the shape of the body.
* Ifay=b3=c5=0, and d3 = o then it represents pure bending of a rectangular cross-section as shown in Figure (a)

* Ifby=c3=a3=0, and i3 = ¢ then it represents pure bending of a rectangular cross-section as shown in Figure (5).

| G (b)G —G

. a b ¢ d e
Fourth order polynomial y = 1—;1x4 + §x3y + fxzyz + E“xﬁ + 1—; 3y

dyr 26 +dy =4
c :c4x2+d4xy7(a4+204)y2

XX

2 2
Gyy = ayX +b,xytcyy

by 2 dy 3
Ty = f(ix +204xy+3y)

22
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Co6.8 Figure below shows a cantilever beam with a rectangular cross-section. An Airy stress function that
could be used 1s given by equation below. In terms of Py, P, b, b, x, y, and L, determine (a) the stress components

and 7. (b) the displacement components «,, «,.Assume plane stress.

v ol Qe 0 oll)

Oy ny,

23
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Torsion of non-circular shafts (prismatic bars)

®*  We develop a more general theory in which there is no limitation on the cross-section shape or the thickness of the shaft.
® Saint-Venant was the first to develop the theory of torsion for non-circular shafts.
* Prandtl later developed an alternative based on Airy’s stress functions.

®*  We will use Prandtl’s approach to obtain the stresses and Saint Venant’s approach to obtain the deformation.

Saint Venant’s method (semi inverse method)

Saint Venant observed that a displacement field should account for the following:

(1) the cross-section would warp under torsion defined by a warping function: ¥ (v, z).
(i1) the only non-zero stress components would be 1, and 7,

Text ¥

]

d¢ _ .40 d¢

1. Displacements: u = y(, z)a v o= xzgs W= Xpgc

3_4’--- the rate of twist per unit length and 1s a constant for a segment of a shafft.
X

- _ 0 d¢ 6_@_@[67(_}
2. Strains: v, @[X@’Z)dx}+§[ xzdx:l L2y z

24
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_ o[ dd7, @ do _ dor . oy
Faz a[xydx:l i &[X(y’ Z)dx dx[y B E:I

*  We could develop formulas as we did for other structural members, but we will use an alternative that requires Prandtl’s method.

Prandtl’s method

* All normal stresses are zero and shear stress T, = 0.
ot ot ot ot
Equilibrium Equations: 2% + " = 0 V=0 —7 =0
oy 0Oz ox Ox
® T,y Ty Cannot be function of x. This requires no distributed torque on the shaft.

Prandtl defines a stress function.

o R

Tyx Txy Dz zx Txz

25
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Boundary conditions:

* Sy = 0, S, = 0 onthe surface of the shaft are met by the stress state.

oy oy .

’cxyny+*cxznz =5, =0 or §nyf@nz =
_ dZ) _dy
My (ds "z ds
{ZE -2 - () - :
(& & s 0 ¥ gt O

The stress function y must be constant on the boundary of the cross-section of the non-circular shaft

T = ZIdeydz
4
Option 1: From stresses, obtain strains, and integrate to get the displacements

Option 2: We equate Prandtl’s stresses to St. Venant stresses.

2 2
Gy 2y _ 559
6)/2 622 dx

Procedure for solving problems of torsion of non-circular shafts

1. For a given cross-section shape obtain a stress function  that is constant on the boundary of the cross-section.

2. Determine any constant in the stress function in terms of the internal torque T by integrating over the cross-section.
3. Determine the Prandtl’s shear stresses.
¢y 9

4. Determine the rate of twist o O R | and obtain Adp = ¢, —¢;.
dx  Ax  x,—x;

26
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C6.9 A shaft has an elliptical cross-section shown below. Determine the equations for maximum shear stress
Tmax at & cross-section and relative rotation (¢, - ¢ 1) of cross-sections at two points (x; and x,) along the length of

the shaft in terms of internal torque 7, shear modulus G, a, b, x; and x,.

27
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C6.10 An alumimum ((; = 4000 ksi) elliptical shaft of is loaded as shown. Determine the maximum shear
stress 1n the shaft and rotation of section 2D with respect to rotation of section at A.

10 in-kips
50 in-kips

3in

21in

23
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Torsion membrane analogy for torsion of non-circular shafts
L

Prandtl realized that the deflection of membrane under pressure has the same differential equation as torsion of non-circular bars.

* important in experimentally determining the torsional rigidity of complex cross sectional shapes such as cross section of a wing of

an aircraft.
i, ---membrane deflection. S ----uniform tension per unit length acts in the tangent direction of deflected membrane.
X
(a)
Plate ®)
membrane
(c)
ou,,
oz

2

. : : ou, Ou
Differential Equation: _2’" + _2’" = &
oy oz S

Boundary Condition: u,, = 0 on boundary

29
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Membrane Analogy
; Prantdl’s Torsion problem
Membrane deflection problem AP
formulation
2 3 2 2
a_um 6_“171 i a_lszra_lzp = —263—4)
6)/2 oz’ S ay oz *
u, W
p d¢
dx
1 G
S
cu oy
m T = = _T
& yx xy aZ
a_um Tox T Txr T _(a_lp)
oy ay
Volume beneath the membrane T =12 J‘ _f\P s
Ijumdydz 4
A

* The internal torque capacity of a cross-section can be found by doubling the volume under the deflected membrane, in other words

torsional rigidity.

®* Analogy can also be used to find the maximum torsional shear stress.

30




M. Vable Advanced Mechanics of Materials: Introduction to Elasticity

Membrane analogy for cross section with holes

® No deformation in the hole and zero shear stress on hole boundary. Model the hole with a rigid plate such that slope at the hole
boundary is zero.

31
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C6.11

Obtain the formulas of torsion of circular shafts shown using membrane analogy.

32
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Torsion of thin-walled open section

® Obtaining analytical formulas for torsion of thin-walled open sections is difficult.

* To develop the approximate formulas we will first consider a #hin rectangular cross section. b > 10¢

® The membrane deflection will be dominated by z and does not change significantly with y, 1.e., u,(z).

2
dw, _ p
dz2 N

* At y = xb/2 the approximate membrane deflected shape is incorrect.

72
3
Volume: V =ib j u, dz = bpt.
128
/2
. dg 1
From Analogy: V"= T/2 p= 2a 3= G
3
7= GELI _ gp ¢ where K = bt /3
3 dx dx

33
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*  GK is the torsional rigidity. K is not the polar moment of inertia.
® The shear stress is related to the slope of the deflected membrane curve.

= - (5)

o, d¢ 1 B d¢
From analogy & = T p= 2a = G Ty = —ZGEZ

* [In thin-walled closed sections we assumed that the torsional shear stress in the thickness direction was uniform.

® In thin-walled open section, the torsional shear stress varies linearly in the thickness direction. The maximum shear stress will be at

edge of the thickness, i.e.,at z = £¢/2.
® vis in the direction of the center line.

Maximum torsional shear stress: |t = %

End effects in rectangular cross sections

which we neglected is non-

¢ There is a transition region near towards the edge of y = £b5/2 where the torsional shear stress ©

ZEro.

34
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C6.12 (a) Obtain the torsional rigidity and maximum shear stress for the thin open cross section of uniform
thickness # shown below. Assume ¢ « @ and gap at D 1s of negligible thickness. Report the answer in terms of internal

torque 7, shear modulus G, thickness ¢, and parameter a. (b) Determine the torsional rigidity and maximum shear
stress of thin closed section where the gap at D 1s closed. [See Eqs (6.32) and (6.34) of the book].

¥
——1
z |l |
A o || |2a
| I
B V.
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