M. Vable Advanced Mechanics of Materials: Influence Functions

Influence Function for Beams

Learning Objective

*  Understand the concept of influence functions and its applications to classical beams and beams on elastic foundations.
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Mathematical Preliminaries
A source point (x) is a point in the material at which a disturbance is placed.

A field point (&) is a point in the material where the impact of disturbance is evaluated.

Influence function G(x, &) relates a value of a variable at the ficld point to a unit value of the disturbance at the source point. In other
words it evaluates the influence of a disturbance at field point.

Influence functions associated with infinite bodies are called fundamental solutions.
The influence function is said to be singular if it becomes infinite at the source point.
The disturbance associated with a singular influence function is called a singularity
Singularity represented by the delta function it is called the source singularity.

When two source singularities of equal and opposite magnitude are placed at infinitesimal distance that shrinks to zero such that magni-
tude of the resulting singularity is finite, then the new singularity is called the doublet singularity.
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Force (Source) singularity influence functions in beams

In the differential equation:
replace forcing function (py) by delta function
replace v(x) by G(x, &)
Solve BVP for G(x, &)

* Influence function G(x, &) represents the deflection at point x on the beam due to a unit value of force placed at &.

(V&) = G P ] Vi) = [ G &)p,(8)de

Length

W(x) = % = I SR &)py(ﬁ)dé where & (n8) = g_f

Length
2
dv 0Ch)
M _(x) :Efd—z = j Gy (x, %)py(g)dE_, where Gy(x, &) = Efa
X
Lengith

_(dMy _9G,
Vy(x) = —(a ) = j G(x, g)py(g)dg where G4(x, &) = —(a )
Length
*  G(x, &) is the slope at field point x due to a unit value of force placed at source point &.

*  (,(x, &) 1s the internal bending moment at field point x due to a unit value of force placed at source point &.

*  (44(x, &) 1s the internal shear force at field point x due to a umt value of force placed at source point &.
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Moment (Doublet) singularity influence functions in beams

P1=-Pl
y

W) = Gl )P + 00w, € )Py = =G, £)PF GX, § +&)P

2 2
v(x) = ~ G(x, @P+[G(x £)+ f s+ 2007 . }p:pg[ﬁhiﬁw , ]
.aé

: . _ : _ oG
Let lim lim (P%) = M to obiain v(x) [ ag} Ho M H(x ) = %
* M is positive counterclockwise with respect to the z-axis.
v = L= [ mEop@ds whee  Hi - D
Length
d v aH
M (x) = EI— = j Hy(x, %)py(g)dE_, where Hy(x, &) = EI—
dJC Lengith
dM oH
e = 57) = | H@Bp e whee  Hyxg) = (57)
Length

*  H(x, &) is the displacement at ficld point x due to a unit value of moment placed at source point &,

*  H(x,&) is the slope at field point x due to a unit value of moment placed at source point &.

*  H,(x, &) is the internal bending moment at field point x due to a unit value of moment placed at source point £,

H4(x, &) 1s the internal shear force at field point x due to a unit value of moment placed at source point .
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Numerical Integration

b N+1

I=[fde = 3 wiix,)

i=1

x; are called the base points. For N+1 base points divides the (b-a) into N intervals.

w, are called the weights.

® The choice of base points and weights define various integration schemes. Gauss quadrature is the preferred integration scheme in

most computer programs as it gives excellent accuracies for smooth mtegrcmds.
Trapezoidal Rule
®  Simplest numerical integration scheme
Jix) N
Ax;
I= 3 ) + /)]

i=1

Equally spaced base points

N1
=y f(xi)+f—(x0);f O | oy

i=1




M. Vable Advanced Mechanics of Materials: Influence Functions

Non-dimensional variables

® Improves numerical accuracy ® Makes algorithms independent of units. Simplifies computer programing,.
Notation: Variables with curved bars will refer to the non-dimensional variable. X = x/L E = E4L, ;v; = 2,/ P,

* p,L, has the dimension of force; ,
YOO L VED = Gx, &)[Pp.L

* .1 02 has the dimension of moment; Y COIwoko ) (@ S)LP Pol.o]

e~ _ 3 fann _ S~ o~ L N e

. pOLO3/EI has the dimension of slope; v(x) =[G SEIL)LP G(x, 8)P

w BE 04/ ET has the dimension of deflection.

Original variable Non-dimensionalized variable Original variable Non-dimensionalized variable
x T =x/L, G G = GIELL
E T =e/L — e
s =& G - %G G = g [ErL 1 =25
—~ L ox %
r, —
Py =By Po =
- aG
P = G G, =06,/L, =291
P =P/(p,L,) 2 2= 0 T T
o~ 4
v v =v[El/(p L — =
[E1/(p, L, )] G Gs = G, = 242
- s %
=& W= WIEY (p,L,0)]
dx 2
H H = HEIL,]
M _ 2
M= Mpto) oH oH
s ~ , H =5 Hi= HEVL)] = =
e = iy M, =M/(p,L°5) ox o'x
Z 2
dx
2 e H2 Ha = H, = 8_}21
p o ol Vy = ¥/ olo) %
y dx dxl 5’}?
Hy Hi=HL =222
%
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Influence functions in classical beams

* Differential equation:

EId—G = p, = (x-8)"

dx”?
The homogeneous G (x, &) and the particular solution Gp(x, &) to the above equation are

3 2
G8) = G +G,mE G = oS toSrexte,  GmE) = o8
1 3 X X
FIG(x, E) = g(x—g) + e + Ey +cyxtoy
Influence function for simply supported beam
G(0,€) = 0 EJE(O £) =0
dx

2
Grey -0 EESw@e -0
dx

8 8] = 6EI[ T T

* M is positive counterclockwise with respect to the z-axis.

3
<xa>3(L‘§)x3(L‘@w@a)m} H(x,@—gg [3(x e @x Lx]

® The Influence function incorporates the boundary conditions of a specific beam.

Non-dimensional influence functions

1 =3~ TN e ] ~ 2, =3 2
6(?6*%) AR a D Eea H7E H=2[3(x-8) +x +3(1-8) x -'x]
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31 Obtain the elastic curve v(x) for the beam and loading shown

¥ w
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(32 Obtain the elastic curve v(x) for the beam shown.
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Recollect

_ L s (L83 (L&)
Gx8) = ool (- B3 B md s (L - gyLx]

G ) - 6erLh) - E-D -a-HR 1D TH+a- DT

N-1
Equally spaced base points: V' = |:Z Gipit

/-\z :Mz/(pol‘z) ﬁ;f - Vy/(poL)
—~ —~.3 e oS "
& = é[(;a_ ) (- )T —(1-E) T+(1-8)7]
G -2 “lp-B 30-DF-a-D+a-1)
0x
Br=20 = (2 By (1-B)F
0%
Gy =992 - (?—E\)O
ox
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(33 A 10 ft. simply supported beam as shown in below is loaded with a distributed force whose values vary as shown in
Table 1.1. The beam has a rectangular cross section with depth of 8 in. in the y direction and width of 2 in. in the z direction. The mod-
ulus of elasticity for of the beam material is 8,100 ksi. Determine (a) the deflection and bending moment at the mid section of the beam.

(b) the maximum deflection and bending normal stress in the beam.

Table 1.1 Distributed load values.

~ J0 1 2 3 4 5 6 7 8§ 9 10
()

9’ Py 1300 310306288256 210 0 0 0 0 0
(Ibsfty

7 1—12(2)(83) - 8533in.  EI = (8100)(10)(85.33) = 691.2(10%) Ibs-in"

G- B - 1-DHF - 0-B%+1-T)T)s

Solution at midpoint using spreadsheet

L,=10ft.  p,=p, =310Ib/ft

~—~ —~_ 1 —~
Gy = [{X~ 5} ~(1-5)%x]

A4 B C D E F G H ; K
1 x= 05
- . T P F @-T B G, @ Gt
ft. Ib/ft i ol
3 0 -300 0 -0.9677 0.5 0.5 0.0000E+00 0.0000E+00  0.0000E+00 0.0000E+00
4 1 -310 0.1 -1.0000 0.5 0.4 6.1667E-03 -6.1667E-03  -5.0000E-02 5.0000E-02
5 2 -306 0.2 -0.9871 0.5 0.3 1.1833E-02 -1.1681E-02  -1.0000E-01 9.8710E-02
6 3 -288 03 -0.9290 0.5 0.2 1.6500E-02 -1.5329E-02  -1.5000E-01 1.3935E-01
7 4 -256 0 04 -0.8258 0.5 0.1 1.9667E-02 -1.6241E-02  -2.0000E-01 1.6516E-01
8 5 =210 05 -0.6774 0.5 0 2.0833E-02 -1.4113E-02  -2.5000E-01 1.6935E-01
9 6 0 0.6 0.0000 0.5 0 1.9667E-02 0.0000E+00  -2.0000E-01 0.0000E+00
10 i 0 0.7 0.0000 0.5 0 1.6500E-02 0.0000E+00  -1.5000E-01 0.0000E+00
11 8 0 0.8 0.0000 0.5 0 1.1833E-02 0.0000E+00  -1.0000E-01 0.0000E+00
12 9 0 0.9 0.0000 0.5 0 6.1667E-03 0.0000E+00  -5.0000E-02 0.0000E+00
13 10 0 1 0.0000 0.5 0 6.9389E-18 0.0000E+00  -5.5511E-17 0.0000E+00
14 -6.3530E-03 6.2258E-02

10
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4
7 % ~ _
o o - S22 ) o geanerr®y) = 9035010 in,

v(x=5) =
14 691.2(10%)

o o iy 2 -3, 3
M,(x=5) = p,L°M_ = (25.833)(1207)(62.258)(10) = 23160 in.-Ib

Deflection Bending moment
0.0 02 04 0.6 08 1.0
0.0000E+00 4 8.0000E-02
-1.0000E-03 - 7.0000E-02 -
6.0000E-02
-2.0000E-03
5.0000E-02 -
-3.0000E-03 - T
4.0000E-02
-4.0000E-03 - 3.0000E-02 ||
-5.0000E-03 S0000ED -
1.0000E-02 -
-6.0000E-03
I 0.0000E+00
-7.0000E-03 - ' ' — | 0.0 0.2 0.4 0.6 0.8 1.0

- T (x=05) = 6.3530(107) Mmas = Mz(x=04) = 67.93

Cpk . (25.833)(120Y

V max
e Rl 691.2(10%

v [-6.3530(10 )] = —49.235(10 ) in.

M, — p,L Mmas — (25.833)(1207)(67.935)(10 ) = 25272 in-Ib

Mmaxymax:l B [(25272)(14)

CRIILE R S | Pl ps

11
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C34

A 10 ft. simply supported beam shown in Figure 1.1 has a distributed force that varies as shown. The beam has a rectangular cross sec-
tion with depth of 8 in. in the y direction and width of 2 in. in the z-direction. The modulus of ¢lasticity for of the beam material is

8,100 ksi. Determine (a) the deflection and bending moment at the mid section of the beam. (b) the maximum deflection and bending

normal stress in the beam.

p, = 300e " sin(mx/10) b/t

10 f

Solution: Convert the distributed function to numerical values and solve it as in previous example.
Table 1.2 Value of distributed load

X Py(x) X px)
) Qb (ft) (Ib/ft)
0 0 6 -156.585
1 -83.883 7 -120.523
9 -144371 g -79.233
3 -179.800 0  -37.691
4 -191.253 10 0.000
5 -181.959

12
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Class Problem 1

Using the influence functions associated with simply supported beams, write the equations for displacement and moment for the beam

and loading shown. (Do not solve)

3
Gix, &) = 6E1[ x—§>3—(L_E“)x3—(L_E’) x+(L—§)Lx}

L
[3< v-g+ Lo A g)x 1]

H(x,8) =

13
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Beams on elastic foundations

® Railroad tracks rest on elastic support made of cross ties and earth,
® Long steel pipes rest on earth or a series of periodic supports,
* Load bearing walls in buildings have beams supported periodically by studs that rest on foundation beams.

®* Machine frame made of beams resting on floors.
Winkler model

* The foundation resistance is assumed proportional to the beam deflection. This linear model works well for small deflection—the
basic assumption in our beam theory.

*  modulus of foundation %, is spring constant per unit length and has the dimension of force per length square.

Dyx

dx/2 & dx/2

(kdx)v
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Fundamental solutions for beams on elastic foundations

F
. v
Boundary Value Problem
2 d2
Differential Equation: d | gy VJ +hkv = P(x)_l
2 zz 2
dx dx
Boundary Conditions: Disturbance due to the force dies out at infinity
2 2 -

im | YL 4V 150 im |ELSY |50 tim [v]<w lim [d—":|<oo
2] — oo| dx dx2 [x| = 0 dxz_ x| — <0 | — oLdx
Integrating the differential equation from minus infinity to plus infinity we obtain

o0 ) ) o0
[ d" | g7 d"J +kv}dx - P [ ()
2 ZZ 2
Y L dx dx .
d2 Co
i(EIZZ ‘;] + [ hevex = P
dx ds D
Static Equilibrium: ZIkax =P
0
dv . e
By symmetry: a(O) = (0 replace moment condition at infinity.

Consider solution for x > 0. In which case right hand side is zero.

15




M. Vable Advanced Mechanics of Materials: Influence Functions

2
Substitute v = Keh into d2 El d V] +kv =20 to obtain
dx dx

K(x4+i)e’”‘ ~ 0 or 2Ae B g

B_(ZI-_;T)I/Zl

hyp = P(L+1) by = —B(1+1) hy = P(1-1) hy = =B =1)
The 3rd and 4th roots are complex conjugate of roots 1 and 2.

v = Refd PV g Py 4 4B 4, =C+iD

v = eBx[A cosPx + BsinPBx] + e_Bx[C cosPx + DsinPx] Fed)

Condition: x — oo the displacement v should remain bounded.

A=B=20
v(x) = Q_Bx[CCOSBx + DsinPx] x>0
Zero slope at origin C=D
v(x) = CeiBX[COSBx-F sinPx] x>0
Equilibrium equation:
_ P_B)
c - (3
(BB, .
v(x) = ET [ cosPx + sinPx] x=10

16




M. Vable Advanced Mechanics of Materials: Influence Functions

Generalization:
P
Deflection: v(x) = G(x, &§)P G(x, &) = (%J e_le_il [cosBlx—&| + sinBlx—&]]
Sign function:
@y xse g 1 x>k
=gl {—(x—%) x<§ o &'x < {—1 x<§
1 X¥»E
sgn(x—¢) = {_1 i
& . B _ 1 EpE
abc_&_al = —£|x—§| = sgn(x—&) {_1 gek
g_f = (g—g) Only valid for fundamental solutions.
Consider

HeE =% GiwE) - g

H(JC, g) = 7G1(x5 g)

17
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Fundamental Solutions

G = (ﬁ)eiﬁlx*&'[wsslx—&l+sz‘nBIx—&|1
G, = {%agn(xfg)e*‘}"“‘?'sm[3|x7&_,|
G, = (%Bje_mx_é"l(sin[ﬂxfa7cosﬁ|xf§|)
Gy = {4 santv )¢ Heospl -4

2
H = sgni{x— i)(%} e_ﬁlx_&lsin[_ﬂx —&|

3
= B )e P A inplx ] — cospl )

H,

H, = —G)sgn(x—i)e_mx_&lcosmx—d
—Blx-¢g

H, = 7022 e [cosPlx —&| + sinBlx —&|]

® The equations above are valid for x>¢ and x< & but not at x = &, unless the application of the formula show that the variable is con-
tinuous at x = .

®*  During integration it will be necessary to consider the regions »>¢ and x< ¢ separately because of the sgn function.
Some properties of fundamental solutions

®*  G(x, &) 18 an even function about the source point &.
*  G,(x&) is an odd function about the source point £.
® G, ) 1s an even function about the source point &.

® Gy ) 1s an odd function about the source point &.

18
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* The displacement is an even function of (x-&). The odd derivatives of displacement with respect to x are odd functions and even
derivatives are even functions.

_ dv _dv _ _
v(—x+&) = v(x-§) L xTE) = g (x-E) M (-x+8&) = M (x-§) Vi(—x+8&) = -V(x-&)
* amplitude decreases exponentially as we move away from the point of application of the force.
(&
d max

Plot of non-dimensionalized variables in an infinite beam with concentrated force.

N e

niax

Vs = PB/(2K) SPBVE (M), = PR |, = P2

max

1. 1.0

V|V ax]

@
dx

S1ol -0l
- ML), yi% % ]

0.3 S

-10 -1o0k

* Displacement, slope and moment are continuous at the origin but the shear force jumps by the value of applied load ~.

19
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C3.5

Obtain the displacement and internal bending moment function for a point on an infinite beam on elastic foundation under a uniform

load as shown
W

ﬁ\<

20
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C3.6

A very long rectangular beam with a modulus of elasticity of 30,000 ksi rest on an elastic foundation of modulus of 2 ksi. The beam

cross section and loading are as shown below. Determine the maximum deflection, maximum bending normal stress, and the maximum
force per unit length acting on the beam.

w =12 kips/ ft. 41n.

o]

Y Vv ¥ o ¢

Y '
< 16 1t .

Mo
Cross section

21
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Non-dimensionalized form of Fundamental Solutions

B = BL, k =kL,/p,

)

o)

Fle-gl o ol
——} leosBl7 - E]+ sin Bl7 - 2]
wn(7-T)e P Fple -]

)e PPl Bl -2l - cos Bl - T

'y
=% ol -2l

) P le 2l eosBle - 2l)

ple-

R Ea

22
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Ca.7

Figure below shows a very long rectangular beam with a modulus of elasticity of 30,000 ksi that rests on an elastic foundation of mod-

ulus of 2 ksi. The beam is subjected to a transverse load of py = 300 ei(X/lo)Sin(nx/ 10) Ib/ft. and has the cross section shown.

Determine (a) the deflection and bending moment at the mid section of the beam. (b) the maximum deflection and bending normal
stress in the beam.

o
<t 10ft. >‘ —=—
¥ Cross gection
= x/L E =8/L, 7, = 070, B = BL, k =kL /p,

— _E\lf_/g\l — — £ — P Y ”f\_ﬁ ~— ~— — —
G = [ is]e leos B2 -El+smBle-El] & = (Lﬁje Bl -8 Bz - Bl - cos Blm - )
4
1 N—1
T(@) = [C(F. E)py(E)dE = [z Gipi+05{GoTg+ ”é“N”ﬁN}](AE“)
O1 i:Nl—l
MAT) = [Ga(F, ) Py(§)dE = [z @){ﬁz+0.5{@)0’50+@)N’5N}](A€)

0 1=1

L, =101t (p.) = p, = 191.25 Ib/fi.

Ymax
3 .4 6, 4 - 5, 2 9 s 2
I = (4)(6)/12 = 72 in. EI = 2.160(10°) kips-in.” = 2.160(10") Ibs-in.
1 1
4 6,4 5 =1
B = (k/4ED" = [2/{4(2.160)(10°)}] = 0.021935 in.
B = 0.021935(10)(12) = 2.6321

23
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Solution at midpoint using spreadsheet

Bl

9

2.160(10°)

A B D E F G H I J K
1 0.5
2 — o s BTN ] oy ke — S~~~
f%. fg/ft ¢ b BEE Al B|x B él < Gp, G2 G2
3 0 000 0O 0.0000 05 1 1.3161E+00 2.2422E-03  0.0000E+00 1.8232E-02  0.0000E+00
4 1 83.88 0.1 04386 04 1 1.0529E+00 32623E-03 1.4308E-03 1.2387E-02 5.4329E-03
5 2 1443 0.2 07549 03 1 7.8964E-01 4 4010E-03 33222E-03 2.5895E-04 19547E-04
7
6 3 179.8 0.3 09401 02 1 52643E-01 55353E-03 52038E-03 -2.0319E-02 -1.9102E-02
0
7 |4 191204 10000 01 1 26321E-01 64575E-03 64575E-03 -5.1491E-02 -5.1491E-02
5
8 5 181.9 0.5 09514 00 -1 0.0000E+00 6.8546E-03 6.5214E-03  -9.4970E-02 -9.0364E-02
6
9 6 156.5 0.6 0.8187 -0.1 -1 2.6321E-01 6.4575E-03 52870E-03 -5.1491E-02 -4.2158E-02
9
10 7 120.5 0.7 0.6302 -02 -1 52643E-01 55353E-03 34882E-03 -2.0319E-02 -1.2805E-02
2
11 8 7923 0.8 04143 -03 -1 7.8964E-01 44010E-03 1.8233E-03 2.5895E-04 1.0728E-04
12 9 37.69 09 01971 -04 -1 1.0529E+00 3.2623E-03 6.4291E-04 1.2387E-02 2.4411E-03
13 10 000 1 0.0000 -0.5 4| 1.3161E+00 2.2422E-03 1.5852E-19 1.8232E-02 1.2890E-18
14 34177E-03 2.0774E-02
— =3 o -3
v = 3.4177(107) M- = 20.774(107)
pL 191.25(120"
b -3 Ty
wr=3) =g =1 )20 )13 4177¢107)] = 52290107 in.

M(x=5) = p LM, = (191.25)(120°)(20.774)(10") = 47677 in.-Ib

24




M. Vable Advanced Mechanics of Materials: Influence Functions

Finite Beams

Consider the finite beam AB as part of an infinite beam with a force and a moment applied in the positive direction at each end. super-
position.

R R

4 B

Y4 BY b ¥ B %
- e=sar ‘ b

¥
/2

v(x) = RyG(x, L/2)+ M HHx, L/2)+RpG(x,L/2) + MpdHx,L/2)+ Ii/z G(x, g)py(g)dg

L/2
%(x) = R,G (x, L/2)+ M Hq(x, L/2)+RpG (%, L/2) + Mg (x,L/2) + I—L/z G (x g)py(g)dg

L/2
M_(x) = R, G,(x,-L/2) + M (x, -L/2) + Ry G(x, L/ 2) + Mpdb(x,L/2) + LL/Q G,(x, E:,)py(E_,)dE_,

L/2
Vy(x) = R G+(x,—L/2)+ M jHh(x, =L/ 2) + Ry G(x, L/ 2) + My (x, L/2) +j G;(x, g)py(g)dg
—£./2

Boundary Conditions: [v or Vy and % or M.
Four equations in four unknowns R , M, Ry Mp

Left boundary at 4 is considered then x = — /2 +¢
Right boundary at B is considered thenx = L2 —¢.

We then let £ — 0 to get the correct signs for the sgn function.

25
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Symmetric loading and boundary conditions

We assume that the beam has symmetric boundary conditions and loading, that is Py = Pyx) = P

Ry, =R, =R, and My =M, = M,

G, ~L./2) + G(x, L/2)] + M [HKx,~L/2) — HKx, L./ 2)] + jzzzq(x, 3 (3.1a)

R (G (x,—L/2) + G (x, L/2)] + M [Hb (x, ~L/2) — H (%, L/ 2)] + jj:qu(x, g (3.1b)
RIG,(x,—L/2) + G, (x, L/ 2)] + M [cHhy(x, —1./2) — Hn (3, L./ 2)] + jj:; G,(x, £ (3.1¢)
R G (x, —L/2) + Go(x, L/ 2)| + M [ Hy(x, —L/2) — Hr(x, L/ 2)] + jLL: Ga(x, & (3.1d)

Need two boundary conditions at one of the ends to obtain R and M,

Asymmetric loading and boundary conditions

We assume that the beam has asymmetric boundary conditions and the loading, that is, PyX) = Py = P,

By = =Rz~ —R and My =M, =M,

v(x) = R [G(x,-L/2) - G(x,L/2)] + M [fHKx,—-L/2)+ Hx,L/2)] + jL/Z G (x, &)p 0dE
F79
LA
) = RAG (6 L/ D)~ Gy (5, L/ D]+ M, [ (5 L/ 2) + (5 L/ D] [ Gyl &), 0
-L/2
L/2
M(x) = R[G,(x, L/2) Gy(x,L/2)] + M [H(x, L/ 2)+ H(x,L/2)] +j s G,(x, &)p,x0ds

L/2
V(%) = R[G50, —L/2) - G5(x, L/2)] + M [Hh(x,-L/2) + i (x, L/ 2)] +I G, (x, &)p,0dé
-L/2
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General loading and boundary conditions

* Any function can be written as a sum of a symmetric function and asymmetric function

¢Pl P2 ¢Ps
¢ P

Beam
Elastic Foundation

Elastic Foundation

Elastic Foundation

General

Symmetric Asymmetric

Py = [py(x)+py(—x)]/2 P, =[P +P,]/2 M, = [M,+M,]/2
P, = [py(x)—py(—x)]/Z P, =1[P,-P,]/2 M, = [M,-M,]/2

Py =P +Py)/2+(P-Py)/2 =P +P, and Py = (P +Py)/2-(Py-Py)/2 =P, -P,
R, =R +R, Ry = R.—-R,

M;=M+M,  Mg=-M+M,
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C3.8

A finite beam on elastic foundation 1s loaded as shown in figure below. (a) In terms of E, I, b, k, and L. determine the unknown force R

and moment M . (b) Make a plot of the deflection, slope, internal bending moment, and internal shear force across the beam assuming

k= 2ksi,p = 0.021935in. ', P = 1.5 kips and . = 10 ft.

4 in,
P P T
A
! —_— !B 6 in.
<+, —
Yo
y Cross section
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C3.9 A finite beam on elastic foundation is loaded as shown below. (a) In terms of E, I, B, k, and 1. determine the unknown
forces R 4, R and moments M 4, Mp. (b) Make a plot of the deflection, slope, internal bending moment, and internal shear force across
the beam assuming the beam cross-section and material properties of the beam and foundation are the same as in previous problem.

4 in,
2P
A \ B3] .
f —=x | 6 1n.
<+, — = v
Y.
¥y Cross section
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M. Vable Advanced Mechanics of Matenials: Influence Functions

I=(M6H)/12 =72 EI= 2.160(10%) kips-in.” = 2.160(10) Ibs-in.
1 1
1 4 _ _
B = (k/4ED" = [2/{4(2.160)(100}] = 0.021935 in.”" = 0.26321 ft.”" BL = 2.6321 P = 1.5 kips
R, = 52801 kips A, = —9.6547 fi-Kips

vi(x) = Ry[G(x,~L/2Y+ G, L/2)] +M,;[H(x,-L/2)—H(x,L/2)]
%(x) = Ry[G(x,-L/2)+ Gy (x, L/2)] + M [H (x,-L/2) - H{(x,L/2)]

M (x) = R [Gy(x,~L/2)+ Gy(x, L/ 20 + M [Hy(x, ~L/2) — Hy(x, L/2)]
Vy(x) = Ry[Gy(x, ~L/2)+ Gy(x, L/2)] + My[H3(x, ~L/2) - Hy(x, L/2)]

Maximum values and the location.

dv
Vinax [ﬁ __ (Mz)max ( V)" )max
Location x 15 fi. 15 ft. 0 15 fi.
Value 2.264(10) fi. 0.7160¢10°>) rads. 2.5778 ft-kips F1.5 kips
1.0
v/v
max
; : : : ; : , AL
-0.5 A (SD 0.5
R
_ dx max
1.0 ; 1.0
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