M. Vable Advanced Mechanics of Materials: 1-D Structural Members

One-Dimensional Structural Members
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The learning objectives in this chapter are:

* Understand the limitations of basic theory and how complexities may be added
to the basic theories of axial members, torsion of circular shafts, and symmetric
bending of beams.

* Understand the concept and use of discontinuity functions in analysis of struc-
tural members subjected to discontinuous loads.
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Internal Forces (Stress Resultants)

» Stress components are internal force distribution that act on a surface.
In Statics we learned that any distributed force can be replaced by an
equivalent force and moment at any point. It is this principle of static
equivalency that we use to relate stresses to internal forces and
moments.

» Relating stresses to external forces and moments is a two step process.
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M, = —[zo,,dA M, = —[yo,d T = [ydv,-zdv,] = [y, —2x,,]d4
A A A A
» Internal forces and moments are positive and negative according to a

sign convention that 1s derived from sign convention for stresses.

» There are specific points in space which decouples the normal stress
due to bending from that due to axial, and the shear stress due to bend-
ing from that due to torsion.

For circular cross-sections with only shear stress ., the shear forces can
be written as dV, = (,,d4) = (v,qdd)cosd ] dV, = (x,,dA) = —(1,4dA)sin® and
y = peosB; z = psin®. Substituting these into torque expression we obtain
the torque on circular shafts as:
T = j[(pcose)(txecose)—(psine)(—txesine)]cﬂﬁl or
A
T = Iptxe[cosze 3+ sinze]dA = J.p’cxedA
A A
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C2.1 The cross-section shown has a uniform thickness t. Assuming ¢ « a the shear
stresses in the cross section were found and are as given. (a) Replace the shear
stresses by equivalent shear forces and torque acting at the centroid C. (b) Deter-
mine the location of the point where the shear stresses can be replaced by just shear
forces and no torque. [Such points are called shear centers. |

txyZO T, = Ks/t 0<s<2a

Xz

1, = K(-4a" +6as—s)/(2af) Ty = 0 2a<s<4a

Ty = 0 1., = K(s—6a)/t 4da<s<oba

2a/3h Y

AT
v
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Logic in structural analysis

Displacements

External forces
and moments

Internal forces
and moments
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Preliminaries

Limitations

The length of the member 1s significantly greater (approximately 10 times) then
the greatest dimension 1n the cross-section. Approximation across the cross-sec-
tion are now possible as the region of approximation is small.

We are away from regions of stress concentration, where displacements and
stresses can be three-dimensional.

The variation of external loads or changes in the cross-sectional area 1s gradual
except in regions of stress concentration.

The external loads are such that the axial, torsion and bending problems can be
studied individually.

Convention

The displacements u, v, and w will be considered to be positive in the positive x,
v, and z direction, respectively.
The rotation ¢ of the cross section will be considered to be positive counter clock-
wise with respect to the x axis.

The external distributed torque per unit length #(x) 1s positive counterclockwise
with respect to the x axis.

The external distributed forces per unit length p(x) and p,(x) are considered to
be positive in the positive x and y direction, respectively.
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Deformations

(b) Bending

Axial
Original Grid

Original Grid

Torsion

(c)

Original Grid

LTI
I+t

T
RN N TR EE N ...

Deformed Grid

Avaal Bending

Torsion

Assumption 1 Deformations are not function of time.

2-A: Plane sections remain | 2a-B: Squashing deformation

plane and parallel. is significantly smaller
than deformation due to

bending,

2b-B: Plane sections before
deformation remain
plane after deformation.

2¢-B: Plane perpendicular to
the beam axis remain
nearly perpendicular

Assumptions

2a-T: Plane sections perpen-
dicular to the axis
remain plane during
deformation.

2b-T: All radials lines rotate
by equal angle during
deformation on a cross-
section.

2¢-T: Radials lines remain
straight during deforma-

after deformation g
= u,(x) (2.5-A) v = v(x) (2.5a-B) ¢ = 0(x) (2.5-T)
d
u = —ya" (2.5b-B)
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Strains

Axaal Bending Torsion
Assumption 3 The stramns are small.
du z d¢
_ Y4, d i i
T m @ GEA e tsw @eB| e g G0D
Stresses
Asaal Bending Torsion
Assumption 4 Material is isotropic.
Assumption 5 There are no inelastic strains.
Assumption 6 Material is elastic.
Assumption 7 Stress and strains are linearly related.
Using Hooke’ du, ’ _ - do
Slngla“(;o e's Gxx _ a (x) (2.7—A) Gxx _ —Eij—\;(x) (2.7-B) T 6 Gpa(x) (2-7'T)
Internal Forces and Moments
Axial Bending Torsion
N= j o, dd (2.8a-4)| j% -0 @8aB) = j P, oA (2.8-T)
A A A
S‘tatlc MZ = *J‘yﬁxxd/l =0 (Z.Sb—A) MZ = *J‘nyxd‘I (2.8b—B)
equivalency a M
M, = i[zcxdi =0 (2.8¢c-A) v, = j":xydA (2.8¢c-B)
4 A
- -
‘ +GXX - * +Txy #
-t - =
I =y
Sign T Oy >
convention “ o ’ Distribution
—  Compressive
—  positive yface
(=)
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Formulas
Asaal Bending Torsion
OriginLocation | JVEdA =0 @9n)| [yEdl =0 @B
A A
2
du d 2
N = —OJ'EdA (2.10-A)| M_ = d_"J' Ey dA T = d—d)ij d4 (2.10-T)
dx 2 e %
A X4 A
(2.10-B)
Assumption 8 Material is homogenous across the cross-section.
Origin is at the cen-
troid of the cross- J.ydA =0 (2.11-A) _[ydA =0 (2.11-B)
section A A
du, N s dy _ T
= X d e = e 2.12-T
& Ed Y -7 euB & G @121
dx zZz

A = Area of cross-section
EA4 = Axial Rigidity

I, = Second area moment of
nertia
El. = Bending rigidity

J=Polar moment of the area.
G.J = Torsional nigidity

Stress formulas

Substituting Equations (2.12-A), (2.12-B), and (2.12-T) into Equations (2.7-A),
(2.7-B), and (2.7-T)

Asaal -Bending Torston
N M T
O =5 @A) 5 - _( NN am| e = £ @13
irZZ
Shear stress
Deformation formulas
Axaal -Bending Torsion
Assumption 9 Material is homogenous between x; and x».
Assumption 10 The structural member is not tapered between x| and x».
Assumption 11 The external loads do not change with x between x; and x».
Integrating Equations (2.12-A) and (2.12-T)
_ See Section 3.2.4 for beam T(xn — x
Yo — U, = jv(xz—xl) deflection. 0y — 0 = (2—1)
2 1 A (rJ
(2.14-A) (2.14-T)
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Equilibrium Equations

Axial Bending Torsion
Nl mstgn | AV Pyl 7 1(x) dx
" pwm
o xx —
a1y an, [ i -]
dv dv df _
5 - W @154) a}’ = p,(x) (2.152-B) 3 = (2.15-T)
an,
= =Y @15bB

Differential Equations

Substituting Equations (2.12-A), (2.12-B), and (2.12-T) into Equations (2.15-A),
(2.15a-B), (2.15b-B), and (2.15-T)

i[GJ@ = —(x) (2.16-T)

us 2
%{EAﬁ) = p,(x) (2.16-A) i[mzzix_‘;] = p,(:(2-16-B)| T;

2-10




M. Vable Advanced Mechanics of Materials: 1-D Structural Members

(C2.2 Figure below shows a laminated shaft in which all materials are securely
bonded together. All assumptions except homogeneity across the cross-section are

valid. Show the equation relating torsional shear stress in the ith material (T,p); and

internal torque T and the differential equation governing the shaft rotation ¢(x) are
as shown below.
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(C2 .3 The beam cross section shown is made from a material that has a stress—strain

curve given by o = 400" ksi. Determine (a) the location of the neutral axis and
(b) the bending normal stress 1n terms of y and the internal moment M.

%)

4 in.

_.>|
AT
1

% |
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C2.4Determine the maximum bending normal stress for the two beams and load-
ing shown in the figure below. The beam cross section and material are the same as
in problem C2.3.

4\J’ 0.125 kips/in.

96 in. —=-|

Case Il
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(C2.5In Timoshenko beams the assumption of planes remaining perpendicular to
the axis of the beam is dropped to account for shear by permitting the cross section
to rotate by an angle y from the vertical. Obtain the differential equations for vibra-
tion of Timoshenko beam by starting with the following displacement field

u = —ywy(x, 1) v = v(x, )

2-14



M. Vable Advanced Mechanics of Materials: 1-D Structural Members

Axial Displacement
Strain:

Equilibrium equations
Differential equation:

Boundary conditions

Solution:

Homogeneous solution:
Particular solution:

Loading Integrals
Torsional Rotation
Rate of rotation:
Equilibrium equation:

Differential equation:
Boundary conditions

Solution:

Homogeneous solution:
Particular solution:

Loading Integrals

If EA 1s a constant:

If GJ 1s a constant:

Boundary Value Problems

duo N

dx FA

dN

a = 7p_x(x)

d( ”0) _

=\ dx Px(%)

" or N

du,
EAE = Il(x) +C1

FAuy = I,(x)+Cix+C,

L(x) = —[p(x)x

Fyla) = jfl(x)dx
uy = (Cx+C,)/EA

up = I(x)/EA

I, I

d _ T

dx (J

dT
o =
e (x)

d(540) _
a(G,Ja) = —1(x)
) or T
I(x) = =[H(x)dx

I(x) = [1(x)dx

d
GJ%Z = I (x)+C,

GJo = L(x)+Cix+C,
by = (Cx+C,y)/GJ
0p = I,(x)/GJ

1, I,
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Beam Deflection

Moment curvature:;

Equilibrium equations:

Shear Force:

Boundary conditions

Solution:

If EI., 1s a constant:

Homogeneous solution:
Particular solution:

Loading Integrals

Fourth order differential equation:

2
M, = Efzzd_‘;
dx
dVy B " (sz)
d d2
:
vo= |4 e &Y
4 |:dx( szxzﬂ
3 2
d dv
_Z(EIZZ 2] = py(x)
dx dx
Group 1 v or V,
and
Group 2 dv or M.
dx

i El é = I & =
dx zz 2| 1()C)+ 1 ]l(x) _jpy(x)dx

dx
d’v
EL~— = Lx)+Cix+Cy  Lx) = [(x)dx
X
dv 2
EIZZEc = Li(x) +Ci(x72) + Cox + Cy

I(x) = [Iy(x)dx
EIv = I,(x)+C,(x"/6)+ Cy(x"/2) + Csx + C,

I(x) = [I3(x)dx

v = (C1(x/6) + Cy(x"/2) + Cayx + C)/(EL)

vp = I(x)/(EI,)
I, L5, 1y

g—>0

lim (F +V, —py(xy)) =0 or V,
g0

1im(MA—MexﬁgFexﬁpy(xA)%—0 or M,
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C2.6  The displacement of the beam in the y-direction, in section AB of the
beam shown is given by = 5(x” —20x") (10 " )and in section BC is given
- 5(x” = 800x +8000) (10 ".If the bending rigidity (ET) is 135 (10°) Ibs-in,,

determine the moment Mg and the reaction force at 5.

Some Loading

‘ 20 in. | 201?‘ 60 in. =
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the beam shown.

w(x/L)2

wl.

wl?

C2.7 Interms of w, L, E, and I, determine the deflection and slope at x = L. of
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Discontinuity Functions

g & (x—a)!
‘ L‘%>FJL4 X A
tEy

f
o ]

5. @

(ate)
-1 0 # S
P = lim lim(pe) OF {(x—a) = { o } j (ray ds = 1
p—o>wo g0 o0 XxX—>a
{a—g)
Delta Function: (x- a)fl
x (a—¢) (ate) x

j(x—a)_ldx: I (x—a)_lder j (x—a)_ldx+ j (x—a)_ldeI

—o0 —o0 (a—¢g) (a+¢g)

b (x—a) b (x—a) A (x-a)
_—... ...
a a a
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referred to as singularity functions.

discontinuity functions.

Doublet Function: (x—a)~ = { o ¥rd _[ (x—a) tdc = (x—a) '
o0 X—>da
d{x—ay _ , 2 dx—ay _ ,..
e (x—a) = (x—a)
L n(x—a)n_l nx1
dx

» The function delta function (x—a) ' and the doublet function (x—a) > become
infinite at x = a. Alternatively stated these functions are singular at x = a. and are

e The entire class of functions (x—a)” for positive and negative ‘n’ are called the
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Templates
Axial Displacement
—p» I _-{V Template equations

. _>| N = fF(xfa)O
L X ™ P, = F(xfa)_l
Torsional Rotation

T T Template equations

( K W T= T¢x o’
|:I>|x —»‘ (= T(x-ay '

Beam Deflection

A A M,
i MV\ %) : ¢ E) E - ¢ J’ Mz
’f = = . D
fl— —>| — g —PI I/:V
4— X [ x ——
0
<
M — 0 x<a H = 0 x<a M= o o2 x<a
& —M x>a # Plx—a) x>a = 5 x>a
Template equations Template equations Template equations
0 2
M, = -M{x—a) M, = fP(xfa)l M, = —w@
= M{x—a) ~1 0
Py py = —P{x—a) By = —w{x—ay

2-21




M. Vable Advanced Mechanics of Materials: 1-D Structural Members

(C2.8 The column shown has a specific weight of y= 0.1 Ib/in®, modulus of elastic-

ity of E = 4000 ksi1 and area of cross-section of A =100 in’. (a) Determine the
movement of rigid plate at C. (b) The reaction force at A.

25 in. 2 kiPSL x[ |2kips

B

60 1n.

4 kips 4 kips
v ¢ C ¢

20 in.i _

E—
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L for the beam shown.(b) Determine the maximum bending moment and shear

force.
wL
tﬁr BT C E‘S:I
.

A A [ - \bsz

<—L—B>‘<J—L4t>|< 21

C2.9  (a)Determine the deflection of the beam at point C in terms of E, I, w, and
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Class Problem 3.1

For the beam and loading shown write the boundary value problem. Assume the
bending rigidity £/ is a constant. DO NOT SOLVE.

Ty W M =wd’
IR -
® S a—"
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