1. (a) Determine I_{vz} for the L shaped cross-section shown in Fig. (a).

- (b) The internal bending moments on a cross-section shown in Fig. (b) were determined to be $M_y = -20 \text{ kN} \text{m}$ and $M_z = -25 \text{ kN} \text{m}$. Determine the orientation of the neutral axis and show it on the cross-section.
- (c) The torsional shear strain at point A on a cross-section shown in Fig. (c) was found to be $1000 \,\mu$. If the shear modulus of steel is $G_{steel} = 80$ GPa and for the bronze is $G_{bronze} = 40$ GPa, determine the maximum shear stress in steel.

- (d) A circular shaft made of elastic-perfectly plastic material has a yield stress of τ_{yield} = 160 MPa. and a shear modulus of G = 80 GPa. Under the action of torque, section B of shaft shown in Fig. (d) was seen to rotate by 0.12 rads. Determine the depth of the plastic zone in segment BC of the shaft.
- (e) A thin cross-section of uniform thickness t is shown in Fig. (e). If shear stresses were to be found at point A then what values of Q_y and Q_z are needed for the calculation. Assume $t \ll a$ and gap at D is of negligible thickness. Report the values of Q_y and Q_z in terms of t and a.
- (f) The shear flow in section AB of the cross-section shown in Fig. (f) was found to be $q = -(0.0340s^2 0.1085s)V_y (0.0550s^2 0.2646s)V_z$, where V_y and V_z are the internal shear forces in the positive y and z direction, and s is measured from point A. Determine the location of the shear center with respect to point D.

A uniformly loaded simply supported beam is made of elastic-perfectly plastic material that has a yield 2. stress of 30 ksi. The beam has the hollow square cross-section as shown. If point A is at yield stress, determine (a) the equivalent internal moment at the cross-section containing point A. (b) the intensity w of the uniform load

A steel E_{steel} = 200 GPa strip is attached to a aluminum E_{Al} = 70 GPa beam to form a composite cantilever 3. beam as shown. Determine the maximum bending normal and shear stress in steel and aluminum.

ANSWERS

(1a)
$$I_{vz} = 450 (10^3) \text{ mm}^4$$
 (b) $\beta_{NA} = -60.3^{\circ}$ (c) $(\tau_{steel})_{max} = 40 \text{ MPa}$

(b)
$$\beta_{NA} = -60.3$$

(c)
$$(\tau_{\text{steel}})_{\text{max}} = 40 \text{ MPa}$$

(d)
$$(depth)_{BC} = 15 \text{ mm}$$

(e)
$$Q_v = -1.031 \text{ a}^2 \text{t}$$

$$Q_z = 1.25 a^2 t$$

(e)
$$Q_y = -1.031 \text{ a}^2 \text{t}$$
 $Q_z = 1.25 \text{ a}^2 \text{t}$ (f) $e_y = 3.755 \text{ in } e_z = -0.571 \text{ in}$

2.
$$M_z = 400 \text{ in-lb}$$
 $w = 285.7 \text{ lb/in}$

$$w=285.7\ lb/in$$

3.
$$(\sigma_{\text{steel}})_{\text{max}} = 191.4 \text{ MPa (T) or (C)}$$

$$(\sigma_{Al})_{max} = 52.1 \text{ MPa (T) or (C)}$$

$$(\tau_{\text{steel}})_{\text{max}} = 5.94 \text{ MPa}$$

$$(\tau_{Al})_{max} = 6.4 \text{ MPa}$$