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9 |Finite Element Method

LEARNING OBJECTIVE

1. To understand the perspective, the key issues, and the terminology of the finite element method.

2. To understand the procedural steps of solving problems by the finite element method.

Figure 9.1 Discrete elements of a building frame.

The finite element method is a versatile numerical method that is ubiquitous in stress analysis and in the design of machines and
structures. Figure 9.1 shows the frame of a building representing an assembly of beams, columns, and axial members. Associated
with each structural element of the building frame 1s a stiffness matnix, and all these matrices together can be assembled into a
global stiffness matrix to represent the structure. This process of assembly 1s methodically done in the finite element method, as
will be seen n this chapter.

The finite element method began as a matrix method of analvsis. There are two versions of it: the stiffness method, m
which the displacements of points on the structure are unknown, and the flexibility method. in which the internal forces in the
structural members are unknown., Commercial computer programs are usually based on the stiffness method, which is described
in this chapter. Such simple elements as axial rods, circular shafts, and symmetric beams will be the primary focus in this intro-
duction to the finite element method. Our treatment of two-dimensional elements (Section 9.6) will be brief,

The set of equations used in the stiffness method are the equilibrium equations relating the displacement of points. The
Rayleigh-Ritz method, which predates the finite element method, is a formal procedure for deriving equilibrium equations in
matrix form, as was seen in Section 7.9. From a theoretical viewpoint, the primary difference between the Rayleigh-Ritz method
and the finite element method is that the kinematically admissible functions used in finding the approximate solutions are defined
over the entire structural member in the Rayleigh-Ritz method, while in the finite element method the functions are piecewise
kinematically admissible. The small theoretical difference, however, results in a dramatically different perspective of solving
problems by the finite element method

Many of the conclusions and equations of the Rayleigh-Ritz method are applicable to the finite element method. We
will briefly study “Lagrange polynomials,” which are used pervasively in the finite element method as the piecewise kinemati-
cally admissible displacement functions. The key steps of the finite element method will be elaborated for simple structures made
from axial rods, circular shafts, and symmetric beams.
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294 9 Finite Element Method
9.1 TERMINOLOGY

The finite element methed (FEM) originated in structures as a matrix method. Each row of the matrix represents an equilibrium
equation. In the matrix method, the equilibrium equations were obtained by force and moment balance. In this chapter we will
obtain the equilibrium equations by minimizing the potential energy. Thus, the fimte clement method formulation presented here
1s very similar to the Rayleigh-Ritz method with one important difference: the kinematically admissible displacement functions
in the finite element method are defined piccewise continuously over small (finite) domains; these are the elements. The bound-
ary points of the elements are called nodes, although nodes can also be points inside the element. The constants multiplying the
piecewise kinematically admissible functions are the displacements of the nodes. Thus, nodes are points on the structure at which
displacements and rotations are to be found or prescribed. The kinematically admissible functions are called interpolation fune-
tions because they can be used to interpolate the values of displacements between the nodes. The representation of a structure by
elements and nodes is called a mesh. A mesh with boundary conditions, applied loads, and material property is called a model. A
model is a finite element representation of a real-life problem, and the accuracy of the model’s predictions is determined by the
assumptions and limitations that are made in constructing the finite element model and the errors introduced in solving the model
by numernical methods.

The use of piecewise kinematically admissible functions changes the perspective with which we view and solve a prob-
lem by means of the finite element method. To elaborate this perspective, consider the statement of minimum potential energy in
Equation (7.31). A structure could be made up of axial members, circular shafis, symmetric beams, and other members such as
curved beams, plates, and shells. Potential energy is a scalar quantity and can be written as the sum of the potential energies of all
the structural members (3Q2'"). Equation (7.31) can be written as:

n
~ et
Q) Z;—a 30 o1

Equation (9.1) is valid for structural members of all types, irrespective of orientation. We could thus develop the poten-
tial energy in matrix form for each member separately. That is, we could develop matrices at the element level in a local coordi-
nate system without regard to how a member is used in the structure. The individual local matrices, called element stiffness
matrices, could be assembled by using Equation (9.1) to form the global stiffness matrix of the entire structure. This perspec-
tive of reducing the complexity of analyzing large structures to the analysis of simple individual members (elements) 1s what
makes the finite element method such a versatile and popular tool in structural (and engineering application) analysis.

We will develop element stiffness matrices for axial members, circular shafts, and symmetric beams. We will use these
matrices to analyze simple structures to elaborate the principles of assembly represented by Equation (9.1). The analysis of com-
plex structure requires the use of computers. The FEM is now a verv mature technique, and there are many commercially avail-
able software packages that can be used for solving engineering problems.

9.2 LAGRANGE POLYNOMIALS

[Lagrange polynomials were discovered independently of the finite element method. These functions are used for interpolations
of many quantities. The polynomials are introduced by using the axial members to provide the motivation and practical relevance
of these functions in the FEM.
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Figure 9.2 Axial (a) linear and (b) quadratic elements.

Figure 9.2a shows an axial member (element) with two nodes. The axial displacements ir; and w5 are the degrees of free-
dom (generalized displacements) in terms of which we plan to derive the element stiffness matrix. The element has 2 degrees of free-
dom, and so we choose a linear function #(x) = C; +C,x with two unknown parameters. We note that at x = x; the
displacement u(x) = 1y, and at x = x, the displacement #(x,) = u5. The constants €| and ', can be solved in terms of u; and w5
and substituted into the linear function representation to obtain Equation (9.2a),

= .x_‘xz x_xl = ) o — ) A2,
u(x) = u, £¥1 —,r) + HQ(VQ _r]j ) £ (x) + 1y H(x) Zm 1, £(x) (9.22)
where
i x_x-_\. " o -.\:_xl
gity=[ —2) W= (= xlj (9.2)
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A linear representation of displacement is sufficient if the forces are applied only at the element end and only if the
cross-sectional area does not change across the element, If the axial member has a distributed load, or if the member is tapered,
then the axial displacement is no longer linear inside the element. A quadratic or higher-order polynomial may converge to the
actual solution faster than a linear element. Figure 9.2h shows an element with three nodes. With 3 degrees of freedom, we can
start with a quadratic displacement function u#(x) = C, + C,x + C,x>, solve the constant in terms of the nodal displacement, and
obtain an equation analogous to Equation (9.2a). This process would be tedious for higher-order polynomials. So we use an alter-
native approach. We represent the displacement in the element by Equation (9.3a),

n

u(x) = Z i £(x) (9.3a)

=1
where n 1s the degrees of freedom (number of nodes, in this case) of the element that can be used for representing the (12— 1)
order of polynomials. Now at the jth node. the displacement z(x,) = .. and we obtain Equation (9.3b).

"

wu(x,) = i, F(x) = u, (9.3b)
J ZFJ 7 7
For Equation (9.3b) to be true, the property given in Equation (9.44) must hold.
1 G
) = { ! 9.42)
' ] e

Equation (9.4a) implies that the polynomials £,(x) are such that the value is 1 on its own ith node and zero at other
nodes. Figure 9.3 shows the approximate plots for linear and quadratic £,(x) that meet this requirement.
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Figure 9.3 (q) Linear and (b) quadratic Lagrange polynomials.

Consider now ¥ for the quadratic. If we represent & (x) = a;(x — x9)(x —x3), its value is zero at nodes 2 and 3. We can
now determine the constant @ such that & at node 1 is equal to one, and we obtain Equation (9.3a).

e (x) = ( r_xzj(r_rﬂ 9.52)

X — X' N — Xy

In a similar manner, we can start with £,(x) = a,(x —x3)(x —x}) and F3(x) = az(x — x1) (x —x,) and determine the value
of ay and a4 such that £, and 7 at nodes 2 and 3, respectively, have a value of one to obtain Equation (9.5b).

.(x) = ("‘ — 4 )[ﬂ] and  £00) = (x X ] (u) 9.5h)

N N Xy =X/ \X3 =Xy

The process we used to obtain the polynomials for the quadratic can now be generalized to obtain Equation (9.6).

"orx-x)

%) = [T [ o)) ©.6)
=

where IT., [ ---] represents the product of the terms in square brackets. The functions defined by Equation (9.6) are called

Lagrange polynomials,

Functions represented by Lagrange polynomials will be continuous at the element ends. Inside the elements, all orders
of derivatives are defined as polynomials are continuous. However, the continuity of the derivative of the function cannot be
ensured at the element end irrespective of the order of polynomials when Lagrange polynomials are used for representing the
funetion, Figure 9.4 shows a possible variation of a displacement field represented by Lagrange polynomials over two adjoining
elements. Displacements at nodes are independent parameters that can have any value; hence the variation shown in Figure 9.4 is
a possibility. As can be seen from Figure 9.4, the continuity of the displacement is maintained, but its first derivative is not con-
tinuous for either the linear or the quadratic element at the element end node.
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Figure 9.4 Possible variation of displacement for (a) linear and (b) quadratic elements.

9.3 AXIAL ELEMENTS

The strains, stresses, and internal forees on any element e can be obtained once the nodal displacements in Equation (9.3a) have
been determined. To differentiate quantities at the element and global levels, we will use a superscript to designate quantities at the
element level and no superscript at the global level. Thus 5 and 5" will refer to the displacement of node 3 for element 1 and
2, respectively, while u4 refers to the displacement of node 3 on the actual structure. The strains, stresses, and internal force can
be written as follows:

@ A S dS
b =g = ZHH,- T (9.7a)
de
o = E% =BV afi 9.7b)
=1 2
N = 4969 = FO4O5" 05 (9.7¢)
xr ‘ ZF] i dx %

The element stiffness matrix and the element load vector can be obtained by comparing Equation (9.3a) and Equation
(7.32a) of Rayleigh-Ritz method. We note the generalized displacements C'; = ;" and the kinematically admissible functions

fix) = £(x).
9.3.1 Element Stiffness Matrix

Substituting f(x) = £,(x) into Equation (7.33d), we obtain the element stiffness matrix as shown in Equation (9.8a).

K}:) . Jjgeu@(%) [g_fk)(& (9.82)

9.3.2 FElement Load Vector

To obtain the element load vector, we assume that point forees can be applied only at the element end nodes. This requirement is
easily met during mesh creation, where we create an element such that the point forces are at the end. From this requirement and
from Equation (7.33g), we obtain Equation (9.9a).

R = j:px(x)%(x)a’x +F 8 (xy) +FV 8 (x,) (9.92)

We know from Equation (9.4a) that £(x,) 1s zero except when j = 1. and £,(x,) 1s zero except when j = n. Thus, if p,
15 zero, only the forces at the end point are nonzero, in accordance with our requirement that external forces be applied at the ele-
ment end.

Forp,.=0:

R{te) i F{le" R:n - R;_e) -0 j=2to(m-1) (9.102)

It should be noted that the force bj-” 18 positive in the positive direction :{;.”’, This property will be important during
assembly.

9.3.3 Assembly of Global Matrix and Global Load Vector

To assemble a global matrix, we must use Equation (9.1). The assembly process is primarily a careful bookkeeping effort to
ensure that the matrix components at the element level add to the correct components in the global matrix, The govemning crite-
rion 1s that the displacement function at the node where two elements meet be continuous. The assembly process is elaborated by
using two quadratic axial elements to model a simple structure, as shown in Figure 9.5. We will assume that there 1s no distrib-

uted force (Le., p, = 0).
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The virtual variation in potential energy due to the virtual displacement in an element can be written as in Equation
(9.11a).

s »]Qim_r
Ve L e, (m)
Q™ - ZF. wmsn,. (9.112)

In Equation (7.35b) we evaluated the derivative of potential energy with respect to C,. Following steps similar to those
in Equations (7.35b) through (7.35¢), we obtain the derivative of the element’s potential energy, which we substitute in Equation
(9.11a) to obtain Equation (9.12a).

8™ =% MY (K -R™) (9.12a)
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Figure 9.5 Assembly of two quadratic axial elements.

Equation (9.12a) can be written in matrix form for the two elements shown in Figure 9.5 as shown in Equation (9.13a)
and (9.13Db).
-

= (1) (1) ;
ALY pAly A1) 1
QB Ky Kp K™ F
50" = I8, AL ) pmfd L L g (9.13a)
s Kn Kpn Kx|)*: )
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From Figure 9.5 we note the following relationship between the displacements at the element nodes to the displace-
ments on the original structure.

1 1 (1
" = i = u, uy) =u
i 1 2 z 3 3
(9.14a)
(2 _ (2 _ @) _
u = uy Uy = uy Uy = s

We note that there are five nodes on the actual structure. Thus the stiffhess matrix for the potential energy of the entire
strueture will have 5 rows and 5 columns. We can use Equation (9. 14a) to write Equation (9.13a) and (9.13b) as Equation (9. 14b)
and (9.14¢).

su | ([&% k% &% 0 of[m] [F")
. Z:‘ = K;':-‘ 2 o ool|% ) 01 |
3 K3]1 3 K;l: ) Kig ) 0 0 B3 Fg’ (9.14b)
Susl [1o o o o o|%] |o©
Sus) \lo 0o o o olus) Lo
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From Equation (9.1) we know that the total potential energy of the structure is the sum of potential energies of all the
elements (i.e., 3Q = 5Q1 + 502)). We thus obtain Equation (9.14d).

i ini a
A1) A1) A1)
6}4‘1 &1] .& 1‘;[3 0 0 ﬂ'l
o A1 1 (1)
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(9.14d)

Equation (9.14d) highlights that the element stiffness matrix and the element load components that are added corre-
spond to the degrees of freedom associated with the shared node of the elements.

9.3.4 Incorporating the External Concentrated Forces

From Figure 9.5 we see Ihﬂl at nodes 1 and 5 there will be reacnon forees at supports 4 and C, which we label R, and RC Force

FY" is in the direction of #.",

' force F\” is in the direction of "

', and the applied force is in Ihe direction of u3. Since u

(23

3 Hl E

and w3 are equal, we see that the applied force P is equal to the sum of the two forces applied at the element nodes. We thus have
the equivalence relationship of Equation (9.15a).
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Substituting Equation (9.15a) into Equation (9.14d). we obtain Equation (9.15b).

0 0
0 0
ol s
£ i3
Ky Ka|

9.3.5 Incorporating the Boundary Conditions on Displacements

R,
0
=
0
RC

(9.152)

(9.15b)

The stiffness matrix in Equation (9.15b) is singular (i.e., its determinant is zero). The singular nature of the matrix reflects the
fact that the two element structures can move as a rigid body. To eliminate this rigid body mode, we impose the boundary condi-
tions of zero displacement at nodes 1 and 5 shown in Equation (9.16a).

u, =0

ouy =0

1
E

s =10

A1
.l\ )

dus =0

Substituting Equation (9.16a) in Equation (9.15b), we obtain Equation (9.16b). Note that the zero values of displace-
ment caused all the components of the matrix in the corresponding row to be multiplied by zero, thus eliminating rows | and 5.
Also, the zero value in the variation of the displacement caused all the components of the matrix in the corresponding columns to
be multiplied by zero, thus eliminating columns 1 and 5. By comparing Equation (9.15b) and (9.16b), we observe that rows and
column corresponding to nodes 1 and 5 are indeed eliminated.

0 1y

K{l} (K;l; K{”’) K(‘) iy

0

-2
A )

A 2)
2‘3 Iy

(9.16a)

(9.16b)

By the principle of minimum potential energy, the virtual variation of the potential energy due to virtual displacement
must be zero (1.e., 302 = 0). Since the virtual displacement cannot be zero, the remaining terms in the bracket must be zero. We
obtain the set of algebraic equations shown in Equation (9.16¢).
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kS kS o [[w] (o
K‘;z‘ KU' ~(2) K’(l‘—;) Uy = P (9.16¢)

1
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The set of equations in Equation (9.16¢) can be solved to obtain the displacements w4, 13, and wy. Thus, we now know
the displacements at all nodes. The strains, stresses, and internal forces can be found in each element by using Equation (9.7a),
(9.7b), and (9.7¢). The reaction forces R4 and R~ can be found from the equations corresponding to first and fifth rows in Equa-
tion (9.15b). These equations can be written as shown in Equation (9.164d).

R, = Klf. i, + K%Jng and R = K'ggl}a3 + Kgi)rq (9.16d)
9.3.6 Element Strain Energy

Equation (7.36) showed that the strain energy 1s half the work potential of the forces at equilibrium. We note that the C'; m Equa-
tion (7.36) are the element nodal displacements. The element strain energy can be written as Equation (9.17a).

Ae l 2 2)pyle
U =3y lu} ‘R (9.172)
J=

In the absence of distributed forces, we can substitute Equation (9.9a) into Equation (9.17a) to obtain Equation
(9. 18a).

m_ (m e HI:IFE,H) (9.18a)

_ Figure 9.6 shows relationship between the external and internal nodal forces. We note that /' = —N{*’ and
F'¥ = N\¥’. In the absence of distributed forces, the internal force in the element is constant: Ny = N'¥' = N Substituting
these relationship into Equation (9. 18a), we obtain Equation (9.19a).

g2 = Lo gony %(Hff] WHN (9.19a)
Nllel : I!LGJ zf{ﬁe} K HE:)
Fi]c_a F‘\:J Nnin Nyf?e}
(@) (b)

Figure 9.6 (a) External and (b) internal nodal forces.

The strain energy values are used for deciding whether the FEM model needs to be improved. In regions of very large
stress gradients, the elements will be highly stressed, and hence elements in these regions will have large strain energies. We
would like to refine the mesh so that we can get good resolution of the stress gradients. Elements with high strain energy identify
the region of the body in which the mesh should be refined.

There are three major techniques of mesh refinement based on the observation that the higher the number of degrees of
freedom, the lower the potential energy, and the better the solution. The s-method of mesh refinement reduces the size of the ele-
ment, The p-method of mesh refinement increases the order of polynomials in an element. The r-method of mesh refinement relo-
cates the position of a node. There are also combinations such as the hr- and fip-methods of mesh refinement. These mesh
refinement methods of reducing the element size, increasing the polynomial order, and reallocating the nodes are used in regions
containing elements with large sirain energies.

9.3.7 Transformation Matrix

In the preceding discussion, the orientation of the coordinate system was the same at the element and global levels. In general,
axial members are at various orientations in a truss. Thus the element stiffness matrix must be transformed before assembly to
correspond to the degrees of freedom in the global coordinate system.

Figure 9.7 shows the global coordinate and the local coordinate, which is along the axial direction of the member. The
local coordinate is oriented at an angle © to the global coordinate. In global wordimlea anode point displaces in two directions.
The displacement vector of node 1 can be written as D, = ufj]) i+ ‘vij{] j - where T and J are the unlt vectors in the global x
and y directions. The unit vector along the local coordinate can be wrilten as: eL = weel ke BT, j - The displacement 2 in
the local coordinate is the component of the vector [)1 in the local direction and can be obtained by a dot product as shown in
Equation (9.20a).

W 55 o= a ay .
1.'(1 Y5 Phodp = u_;;l) cos B +vg, sin 0 (9.20a)
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The displacements at other nodes also transform as in Equation (9.20a). The equations transforming the local displace-
ment into global displacements are written in matrix form as shown in Equation (9.20b).

(1)
g
1]
4D Gl
! cos© sinB 0 0 0 0 Ly
o - ) G| T
Uy ' = 0 0 cos® sinB 0 0 arl = [7]
(1) 0 0 0 0 cos O sin0]| 72
Hes (1)
b

(1)
Uy

A1)
Vai
1
e
(1]
Lyt

A1
Vg

(9.20b)

The [7'] matrix in Equation (9.20b) is 3 x 6 matrix relating the local and the global coordinate systems. If we had
nodes on the element, then the size of the matrix [7'] would be 7 x 2n. We now rewrite Equation (9.20b) in compact matrix form:

(1} (1)

{u = [THus '}

We can also write Equation (9.13a) in compact matrix form, as follows:
5" = (3uy (K1Y - (1Y)
Substituting Equation (9.20¢) into Equation (9.20d). we obtain Equation (9.20e).
80" = (dug’y TN (KT 3 - (4D
Q" = augy AN TK NN @S - 111D
We define the quantities in Equation (9.20f).

KS =K () = 117 F)

or

(9.20¢)

(9.20d)

(9.20¢)

(9.200)

Equation (9.20f) use the transformation matrix to transform the stiffiness and the load vector. Substituting these equa-

tions into Equation (9.20e), we obtain Equation (9.20g).

50" = auly (kY {nd

—{FE&'D

(9.20g)

Equation (9.20g) has the same form as Equation (9.20d), but now the nodal displacements and forces are in the global
coordinate sy stem. Equation (9.20g) can now be used as before in the assembly process.

9.3.8 Linear and Quadratic Axial Elements

In writing the element stiffness matrix and the element load vector, we will assume the following to account for the possibility of

varying distributed loads, cross-sectional areas, and moduli of elasticity.

+ The distributed load p, is evaluated at the midpoint of the element and has a uniform value py,.

* The cross-sectional area A4 is evaluated at the midpoint of the element.

+ The modulus of elasticity £ is constant over the element.

The stiffness matrix and the load vector can be calculated by using Equation (9.8a) and (9.9a) and are as given in Equa-

i ¢ 4ie) , (e (o)
{”(8;} _ 1 [-K(e.r] o E{ A 1 = {R(c)} _ Py 1
s 2l g 2 |1

tion (9.21a).

{FP}
+
ghe

(9.212)

Accompanias M. Vabla's Infermediafe Mechanics of Materials, Z2nd Edifion



Accompanies M. Vable's Interme diate Mechanics of Materials, Znd Edition

Axial Elements 301

We assume that the three nodes of the quadratic element are equally spaced. The stiffness matrix and the load vector,
which can be calculated by using Equation (9.8a) and (9.9a), are given in Equation (9.21b),

(2} &)

f L B T 28 ] pL 1 Fﬁ
e & € < _ o

") =qu"r [K¥1=37|-8 16 8| (R}="g14r+1 0

O | -8 7 L) L

The potential energy of the element in compact matrix form can be written as in Equation (9.21¢).

50 = {aHrw}T{[K—wJ]{Hie‘:}_ {Rm}}

9.3.9 Procedural Steps in the Finite Element Method

(9.21b)

%.21¢)

The analysis of a structure by the FEM proceeds in steps that are generic and can be used for structural elements other than axial
rods. However we use axial rods to elaborate the steps.

Step 1.

Step 2.

Step 3.

Step 4.

Step S.

Step 6.
Step 7.
Step 8.
Step 9.

Obtain the element stiffness matrices and the element load vectors.

From the geometry, material properties, and distributed loads. the element stiffness matrices and the
element load vectors can be written by using forms equivalent to Equation (9.21a) [or Equation
(9.21b)].

Transform from local orientation to global orientation.

Equation (9.20f) can be used to transform the element stiffness and the element load vector to the ori-
entation of the global coordinate system.

Assemble the global stiffness matrix and load vector.

The element nedal generalized displacements are related to the nodal generalized displacements on
the structure to ensure continuity of the generalized displacements. For axial elements, the general-
ized displacements are just the displacement. As shall be seen, however, for beam elements the gener-
alized displacement also include slopes (i.e., derivatives of displacements).

Incorporate the external loads.

The sum of the nodal forces at the element end are replaced by the equivalent external forces applied
to the structure.

Incorporate the boundary conditions.

Any zero values of the generalized displacement are incorporated by eliminating the corresponding
row and column from the global stiftness matrix and load vector.

Selve the algebraic equations for the nodal displacements.

Obtain the reaction forces, stresses, internal forces, and strain energy.

Interpret and check the results.

Refine the mesh if necessary, and repeat steps 1 through 8.

EXAMPLE 9.1

A rectangular tapered aluminum bar (£4; = 10,000 ksi, v = 0.25) is shown in Figure 9.8. The depth in the tapered section varies
as h(x) =4 - 0.04x, Use the following finite element models to solve the problem.

Model 1: two linear elements A5 and BC
Model 2: two equal length linear elements m BC and a linear element in 45

For the two models, find the stress at point B, the displacement at point C, and the strain energy in each element. Compare the
results with analytical values and comment.

1

: —
4in P =10 kips

Figure 9.8 Axial member for Example 9.1.
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PLAN
We can determine the cross-sectional area as a function of x, and we can determine the cross-sectional area in the middle of
cach element for determining the element stiffness matrix. For each model, we will follow the steps outlined in Section 9.3.9.
SOLUTION
The cross-sectional area varies as shown in Equation (E1).

Alxy = (h(x) = 4-0.04x (E1)
Figure 9.9 shows the two FEM models. In each model, the cross-sectional area 1s evaluated from Equation (E1) at the midpoint
of the element.

o {B (¢f . 1.!5 ¢ .
10 kips 10 kips
10 in | T ‘ 100! 20in 20in
(a) »
Figure 9.9 The FEM models for Example 9.1. (a) model | and (5) model 2.
Model 1
Step 1. The cross-sectional areas at the midpoints for the two elements shown in Figure 9.9a are as follows:
A,=4(5)=38in" and 4,=A4(30)=281in’ (E2)
Noting that Ly = 10 and L = 40, we obtain Equation (E3)
E,AJL, =3800 and  E,d./L, = 700 (E3)
The element stiffness matrix and the element load vector for the two elements can be wnitten by using Equation (9.21a) as
shown in Equation (E4) and (ES).
) e _ F'Lllr
[_ﬁ:rl )] — 33(1) —JSOO {R" 1 J} - { 1 } (E4)
—3800 3800 F; )
700 ~700 #Y
12 = 2 1 o
(K7 = R ={ } (ES)
-700 700 3“’

Step 2. The global and local orientations of the elements are the same, so no transformation of the element stiffness
matrices and the load vectors is needed.

Step 3. There are three nodes at the global level. The global stiffness matrix and load vector before incorporation of
boundary conditions and loads can be written as in Equation (E6).

1)
3800 —3800 0 7
[K5] = |-3800 4500 —700 Ry} =< FY 4+ 52 (E6)
0 —700 700 #O

Step 4. We note that there is no concentrated force at node B, as recognized in Equation (E7).

FO4p2=¢ (E7)
Step 3. The force at both the element and global levels is in the direction of displacement at point C. Hence we can
write Equation (E8).

F = P =10 kips (E8)

Step 6. The displacement at 4 is zero, which corresponds to the first degree of freedom. We eliminate the first row and
column to obtain the algebraic equations in the matrix form shown Equation (E9).

4500 700 {”2} _ { 0} (£9)
~700  700| |15 10
Step 7. Equation (E9) ¢an be solved to obtain the results shown in Equation (E10).

w,=2.6316(10 ") in  and  w; =16.9173(10 ) in (E10)
The displacement at C is the displacement of node 3.

ANS. . = 000169 in
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Step 8. The stress at point B in each element can be found by using Equation (9.8a) as shown in Equation (E11) and

(E12).
: B ed ; -3
P E[Hl[_%l] i ug[L—lI]] = 10,000( 26380 ) E11)
. " =10 :
The axial stress at point B in element 1 is
ANS. o’ = 2.63 ksi (T)
2 S dS b I 14.2857(107°)
(2} o (2)+=41 (2)%=2 = = E = "
o = Hu? T+l Lm E[u_(_}ﬁ) +u3(ﬂj] 10,000( 122521012 )) E12)

The axial stress at point 5 in element 2 is

ANS. 6% =357 ksi (T)
The strain energy in each element can be calculated as described in Section 9.3.6. The internal axial foree in each element
can be found from Equation (9.7¢), as shown in Equation (E13) and (E14).

NV = 4V6 = (3.8)(26316) = 10.0 (E13)
NP = 4%6% = (28)(3.5714) = 10.0 (E14)
The strain energy in each of the elements can be found from Equation (9.19a) as shown in Equation (E15) and (E16).
3 %[ug”_ug”]w‘” = LN < 001316 in - Kips (E15)
U = %[u?—u?’]z\f‘” = %[a3—u2]1\f(2"’ = 0.07143 in - kips E16)

Model 2

Step 1. From Equation (E1), the cross-sectional areas at the midpoints for the three elements shown in Figure 9.95
can be written as in Equation (E17).

A =A(5)=38in" A,=A4(20)=32in’° A5 = A(40) = 2.4 in’ (E17)
Noting that L) = 10, L, = 20, and L3 = 20, we obtain Equation (E18).
E\A /L, =3800  FE,A /L, = 1600  Esds/L; = 1200 (E18)

The element stiffness matrix and element load vector for element 1 are same as in Equation (E4). The element stiffness matrix
and element load vector for the remaining two elements can be written by using Equation (9.214), as shown in Equation (E19)
and (E20).

[RAZ!] _ | 1600 —1600 {Rih} _ {F(]-} (E19)
~1600 1600 oo
F(B_a

(k) = [ 1200 ~1200 {.Rm}:{ i } (20)
—1200 1200 s

Step 2. The global and local orientations of the elements are same. so no transformation of the element stiffness
matrices and load vectors is needed.
Step 3. There are four nodes at the global level. The global stiffness matrix and load vector can be written as in Equa-

tion (E21).
F(l_r
1
3800 3800 0 0 )
- 1— | 3800 5400 —1600 0O gk TR )
K] Roy={ 1 E21)
0 —1600 2800 —1200 F' +F
0 0 -1200 1200 O

Step 4. We note that there is no concentrated foree at nodes B and I in Figure 9.9(b). Hence by force equivalence, we
obtain Equation (E22) and (E23).

e pt=p (E22)
FP+FY =0 (E23)

The torce at both the element and global levels is in the direction of displacement at point C'. Hence we obtain Equation (E24).
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F$) = P = 10 kips E24)
Step 3. The displacement at 4 is zero, which corresponds to the first degree of freedom. We eliminate the first row
and column to obtain the algebraic equations in matrix form, as follow:

5400 —1600 0 | | 0 )
~1600 2800 —1200| 1M =90 (H25)
0 —1200 1200| [u4 10

Step 6. The displacements in Equation (E25) are solved in Equation (E26).
u, = 26316(107) in 3 =88816(107)in  u, = 17.2149(107) in (E26)
The displacement at point C 1s the displacement of node 4.

ANS. u, = 0.00172 in

The stress at point B in element 1 1s as given by Equation (E11) because the displacement at node 2 did not change in this
model. The stress in element 2 can be found by using Equation (9.7b) as shown in Equation (E27).

o = gl 2 dE, _'_“gzrd__%
dx dx |

The axial stress at point B m element 2 is

_ E[ +u3 L) 10,000(42200 ) 30 )] E27)

ANS. 6 = 3.13 ksi (T)

The strain energy in element | is as given by Equation (E15) because the node 2 displacement of this model is the same as for
model 1. The internal forces in the remaining two elements are as shown in Equation (E28) and (E29).

N = 4962 = 100 (E28)
N¥ = 4% = 160 (E29)
The strain energy in each element can be found from Equatlon (9.19a). as shown in Equation (E30) and (E31).
UP = 1@ - WP IN® = ,1)[”3_1;2]_.&-“’ = 003125 in - kip (E30)
5 %[u(;) DN = -[u‘,-;@] N = 0.041667 in - kip (E31)
Step 7. The analvtical results for displacement and stress for the tapered axial rod shown in Figure 9.8 are given in
Equation (E32).
0. ()=—22—ksi and  u(x)=-0.025 In(l-0.01x) in F32)

(1-0.01x)
The strain energy of the entire rod can be found by using the fact that the internal force is V= 10 kN, as shown in Equation
(E33).

du, \du 1" du du
U, 2_[ [1;4 ())—( Ydx = EJ'O N() S (x)dx = J (10)g(x)ds or
U, = 5[u(50) —u(0)] = —0.086643 in - kip (E33)

The potential energy is twice the negative value of the strain energy at equilibriwm, as shown in Equation (7.36). The analytical
results and the results using the two FEM models are shown in Table 9.1.

u Stress at B: pp (ksi) Strain Energy: U Total
(inches) Potential
(10_‘}) Leftof B Right of B Average FElement1 Element2 Element3 energy Q
Model 1 16.917 2632 3.571 3.101 0.01316 0.07143 —0.16917
Model 2 17.215 2632 3.125 2.878 0.01316 0.03125 0.04167 —-0.17215
Analytical 17.329 2978 2.778 2.778 -0.17329
COMMENTS

1. The total potential energy of model 2 is less than that of model 1, thus we expect the results of model 2 to be better than that
of model 1 and this expectation is validated by the results in every category of Table 9.1. However, commercial codes do not
calculate the total potential energy of a structure. Also the total energy cannot tell us if results in a particular area of interest
will improve or not. There are several other indicators that can be used to make decisions to refine a mesh or not in a given
area
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2. For model 1 the strain energy of element 2 is significantly larger than element 1. The more evenly the strain energy is dis-
tributed over the elements in a mesh the better will be the results. A uniform value of strain energy over the elements will
produce the best results for a given number of degrees of freedom. Thus, regions containing elements with high-strain
energy should be refined.

3. There is a stress discontinuity at peint 5 in both models. This should not be the case as B 1s not an interface of two materials
nor is there a concentrated force to cause the stress to jump. Thus, the discontinuity is an artifact of the finite element
maodel. The discontinuity in model 2 however 1s smaller than the discontinuity in model 1. This is another indicator that the
regions (elements) showing large stress discontinuity must be refined.

4. The average stress value at B in both models is closer to the analytical solution than stress value in either elements. Thus, for
purpose of using FEM results for design and analysis the average values should be used.

5. The reaction foree at.A can be found noting that 7" = R in the first row of Equation (E6) as shown in Equation (E34).

R, = u\"(3800) + i (=3800) = 1;(3800) +1,(—3800) = = 2.6316(10°)(=3800) = —10 kN (E34)
The minus sign indicates that the force R 4 acts opposite to the positive direction u}". In other words, the reaction is to the left,
which we can see intuitively 1s the correct direction. In interpreting results from FEM models, one must note carefully the local

and global coordinate directions
We record the following observations

+ A good FEM mesh should not show large differences in element strain energy.

+ A good FEM mesh should not show large discontinuities in stress values across element boundaries unless thg
element boundary is an interface of two materials or a concentrated force is applied at the element end.

+ Average values of stresses at the element boundary should be used for purposes of design and analysis.

+ Care must be taken in interpreting FEM results: note the orentation of the local and global coordinates and whether
the variable reported is in the local or global coordinates. I

EXAMPLE 9.2

A force of /=20 kN is applied to a roller that slides inside a slot as shown in Figure 9.10. Both bars have a cross-sectional area
of 4 = 100 mm? and a modulus of elasticity £ =200 GPa. Bars AP and BP have lengths of L 4p = 200 mm and Lgp = 250 mm,
respectively. Determine the displacement of the roller and the reaction force on the roller, using linear elements to represent
each bar.

Element 1

Figure 9.10 Two-bar structure for Example 9.2.
PLAN
We will model cach pin as able to displace in the x as well as the y direction to account for the fact that element 2 is at an angle
to the x axis. We will follow the steps outlined in Section 2.3.9 to obtain the results.
SOLUTION
Step 1. Equation (El) and (E2) can be written from the given information.

E\d;  (200)(107)(100)(107%) _

T = (100)(10°) (E1)
1 (200)(10°7)

] —f
Exd, _ (200)(10 ](ll}(_ls)(l() ) — 80y(10%) E2)
L, (250)(107)

We can use Equation, (9.21a) to write the element stiffness matrix and load vector n the local coordinates for the two elements,
as shown in Equation (E3) and (E4).

(1)
[K‘”]=[‘°° ‘mﬂ(m"’) {R“’}={Ff} E3)
~100 100 F
; . [P
[R“‘1=[3” _SO}UOG) {R"‘}={ '3} (E4)
80 R0 72
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Step 2.
tion (ES).
100 0 =100 0
=100 0O 100 0
0 0 0 0

Step 3.
shown in Equations (E9) and (E10).
100
0
sQ = (Fud 7 [=100
0
0
| 0
0 0 0
00 0
501 = {bu'f)}T 0 0 9358
0 0 25711
0 0 -933582
[0 0 25711

0 -100 0 0 0
0O 0 000
0 100 0 0 0
0 0 000
0 0 000
0 0 0 0 0

0 0

0 0
25711 —9.3582
70.642 —25.711
~25711  9.3582
~70.642 25711

{Ril_r} .

0.9397 0 0

0 0.3420 U.9397:|

FY
0
? 19
109y -1 F2
0
0]
0
" =
0
—70.642
25711
70.642 |

K2 = (kN = 111k 80 -80|(0.3420 0.9397 0 0 (10%) or
-80 80 0 0 0.3420 0.9397
03420 0 |
A2y _ [0.9397 0 27.362 75.175 -27.362 =-T75.175 3
[Ka'l = (107)
0 0.3420|[-27.362 -75.175  27.362 75,175
0 09397
9.35R82 25.711 -0.3582 25711
[KE}':J] _ | 25711 70.642 =25711 —70.642 {106)
-9.3582 -=25.711 9.3582 25.711
25711 —70.642 25.711 70.642
The element load vector for element 2 can be calculated as shown in Equation (ES).
0.3420F 2l
0.3420 0 5 5 o
Ry = &y = 09397 o |[F }z 0EIE” | Ay
' 0 03420 (FP 0.3420F%7 ol
Q . -
L 09397F? | |F®

2)
Fiy

2)
Py
2}
Fy,

:
)

Element 1 is in the x direction, but m the global coordinate each node has 2 degrees of freedom (x and v), and
thus the element stiffness matrix and load vector in the global coordinate system can be written as in Equa-

(ES)

We note that the element 2 makes an angle of 70° with the x axis. The transformation matrix can be written as in Equation (E6).

EEf cos 70 sin 70 0 0 | _ [0.3420
0 0 cos 7O sin 70 0

The element stiffness matrix for element 2 in the global coordinate system can be calculated as shown in Equation (E7).

(L6)

(E7)

(E8)

With three nodes there are ¢ degrees of freedom. The potential energy for each element can be written as

(E9)

(E10)
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Equation (E11).

FU 4+ F2 =20(10Y N
where R j and Rp are the reaction forces at 4 and P, and Rg, and Rp,, are the reaction forces at B in the x and y directions. Sub-
stituting Equation (F12) into Equation (E11), we obtain Equation (E13).

i

FO=R, FP=R,,

2) _
=R,

Circular Shaft Elements

E1

307

The total potential energy of the system can be obtained by adding the potential energies in Equations (E9) and (E10) to obtain

y FY
By - . 1, 1
100 0 —100 0 0 0
v v L
! 0 0 0 0 0 0 ' .
65 ouz| | [-100 0 109.3582 25711 -9.3582 25711 (109 2 T E1D)

3, 0 0 25711 70642 —25.711 —70.642 Vs F

Sty 0 0 -93582 -25711 93582 25711 s FO

Sv,[ |[L O 0 25711 -70642 25711 70642 % o
: 2y

Step 4. Noting that the applied load at the roller is in the x direction and that there are reaction forces at points 4 and
B. we obtain the load equivalences shown in Equation (E12),

R =R,

2)

Oy W B i, R,
5 100 0 =100 0 0 0 5
illlo o o 0 0 0 Vi 3
Ouy | | |— )35 5 935 i s 20010
50 — 100 0 1093582 25711 -9.3582 25711 |( g8yl "2 _ 200107 E13)
OV, 0 0 25711 70642 -25711 -70.642 V2 Rp
Suy| || 0 0 93582 -25711 93582 25711 ity Ry,
dvy| (L 0 0 25711 -70.642 25711 70.642 | Vs Ry
Step 5. The boundary conditions on displacements are given in Equation (E14).
u; =0 v; =0 Vv, =0 uy; =0 vy =0
. 1 X 1 ‘ 2 ‘ 3 3 (Eld)
b“] — 0 O\’l — 0 bvg — 0 b‘ﬂ3 = 0 8"’3 = '0
Substituting Equation (E14) into Equation (E13) and equating 82 = 0, we obtain Equation (E15).
109.3582(10%)u, = 20(10°)  or  u, =0.1829(107°) m (F15)

The displacement of the roller is

ANS. u; = 01829 mm

The reaction force can be calculated from the fourth row of Equation (E13) as shown in Equation (E16).

25711(10%u, = Ry or

Rp = [25.711(10%)][0.1829(107)] = 4.702(10%) N (F16)
ANS. R, = 4.7 kN
COMMENT

If the roller were not in the slot, it would be free to displace in the y direction, and v, would not be zero. In such a case, Equa-
tion (E13) would yield two equations in the two unknowns w5 and v-, which could be solved for the displacement of the roller.
See Problem 9.7.

9.4 CIRCULAR SHAFT ELEMENTS

It was seen in the Raleigh-Ritz method that the derivation of a stiffness matrix and load vectors for torsion of circular shafts is
similar to that for axial members. The stiffness matrix and load vectors can be obtamed by replacing (a) the axial rigidity £4 by
torsional rigidity (z/, (b) the distributed axial force p.(x) by the distributed torque 1(x), and (c) the concentrated axial forces F; by
the concentrated torques 7. The assembly and solution procedure is the same as for axial members.

2.5 SYMMETRIC BEAM ELEMENTS

The deflection v and its derivative dv/dx must be continuous at all points on the beam, including the element ends. Lagrange
polynomials cannot be used for representing v because as elaborated in Section 9.2, this would result in a slope that was discon-
tinuous at the clement end imrespective of the order of polynomial used. To overcome this problem of continuity of slope, we
must define v and dv/dx as degrees of freedom at the clement ends. With 2 degrees of freedom at each end, we have a total of 4
degrees of freedom in the element. A cubic polynomial has four unknown constants that can be solved in terms of the 4 degrees
of freedom. We write v(x) and the four conditions as shown in Equation (9.22) and (9.23).
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v(x) = C, +Cox+ Cax” + Cpx” (9.22)

el dv e (e dv el
Vo) =vi? ) =07 Vi) =vy () =0 (9:23)

Substitutmg Equation (9.22) into the four conditions in Equation (9.23), solving the constants C'’s, and substituting the
result back into Equation (9.22), we obtain Equation (9.24a) and (9.24¢).

v(x) = £+ A0 + £V +£i(x)05” (9-242)
A0 = 1- 3(,\: ?‘1)3 & 2(.: ;CIT L) = L{[’r ;xl) i 2(_’r T;I)g i (x 1_»:1) 3] (9.24b)
fi(x) = 3('%)2—' (,\:;x,f fax) = L[—[x;x')2+ (Y—_;if] (9.24¢)

The above interpolation functions belong to a class called Hermite polynomials. Figure 9.11 shows plots of Hermite
polynomials. Note the zero value of the function and the zero value of the slopes. These values are a consequence of the fact that
Equation (9.24a) must satisfy the conditions in Equation (9.23)

Node 1 Node 2 Node 1 Node 2
(e e) (e e)

I
1 zero slope | zero slope i
S0 _i | x f3(x) ? .

Ja(x)

zero slope

I
|
Jax)
1 I
4 =

The stiffness matrix was given by Equation (7.38¢). To obtain the element load vector, we assume that point forces and
moments can be applied only at element end nodes. This requirement is easily met during mesh creation, where we create an ele-
ment such that the point forces and moments are at the end. From this requirement and from Equation (7.38d), we obtain the
right-hand-side vector as shown in Equation (9.25a).

Figure 9.11 Hermite polynomials.

(e A e e erd 'erd
R, ' = I 2,0 (x) dx + F x(xl) + Fy ].}ﬁ-(xz) +M, d_{(rl ) +M; é(xz) (9.252)
o ]

From Figure 9.11 we have that fi(x,) iszero except whenj =1, and f;(x,) is zero except when j = 2. Similarly df /dx
at x; 1s zero except when j = 2, and df/dx at x, is zero except when j = 4.

Figure 9.12 shows the local coordinate system for the beam element and the positive directions for deflection and
slopes. For the work potential to be positive, the nodal forces and moments must be positive in the same direction as the deflec-
tion and slope..
“ic)

" (e) e)
0(1‘) 0, A ,[(18) M(z

vgc) F(le) Fge)

Figure 9.12 Positive directions on a beam element for (a) deflection and slope and (b) forces and moments,
In writing the element stiffness matrix and element load vectors, we will assume the following to account for the possi-
bility of varying distributed loads, cross-sectional areas, and moduli of elasticity.
* The distributed load Py is evaluated at the midpoint of the element and has a uniform value py.
+ The area moment of inertia 7 is evaluated for the eross section at the midpoint of the element.
* The modulus of elasticity £ is constant over the element.
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SubstitutingE quations (9.24b) and (9.24¢) into Equations (7.38¢)) and (9.25a), we obtain the element stifthess matrix
and load vectors shown in Equation (9.26a) and (9.26b). We also show the displacement vector with 4 degrees of freedom.

(eh
Y1 (e) ()
(e} e(le’ e 2EI S 6(8) 3Lre| 2 6(3, Bi. z
vy =1 (k) = 230 2@y’ Y @) (9.26a)
Y E7Y |6 3™ 6 @
6y’ 0w Gy s e
6 R

e e) e el
m} 2 PE’) }L( : L( ) s M(I
12 6 F(;J

{e)
=T M(;\'

{R (9.26b)

The virtual variation of potential energy for the element can be written in compact matrix form as shown in Equation
(9.26¢).

30 = (v Y (K1Y (R7Y) (9.26¢)

The assembly and solution process, which is as described Section 9.3 for axial members, is elaborated in Example 9.3.

EXAMPLE 9.3

For the beam and loading shown m Figure 9. 13, use two equal elements to determine the deflection and slope at B and the reac-
tion force and moment at 4. Assume that £7 is constant for the beam.
¥

w

f 4

B

Figure 9.13 Beam and loading for Example 9.3.

PLAN

There are three nodes on the beam, resulting in a total of ¢ degrees of freedom before boundary conditions are imposed. We fol-
low the procedure outlined in Section 9.3.9.

L >‘-=; L >|

SOLUTION
Step 1. Using Equation (9.26a) and noting that pp = —w, we write the load vectors for the two elements as shown in
Equation (E1).

F‘l 1) 6 F‘{l 2)

MY 2 L] |M?
(R =1 1 amd (®Oy=2) e EN

F 127 6 F2

. 5 e

M MY

The element slilTness matrix is the same for both elements. From Equation (9.26a), the element stiffness matrix can be writlen as
shown in Equation (E2).

6 3L -6 3L
[K(l}] - [Rf(z_]] — @ 3L 2" -3L L- (EZ)

3

P8 38 6 3L
3. LF 35 3t

Step 2.  We note that the relationships between the local displacements and slopes and the global displacements and
slopes are as given by Equation (E3).

a y _ 2 _ 2 _
Vit =Yy Vo o ="Vg Vi = Vg Vz© = V¢

(E3)

Il

V=9, e’t=8; o7

&

e
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Step 3. The variation of potential energy function for the two elements can be written as shown in Equation (E4) and

(E5).
(1) ! (1 1
L A1) }
. 6 3L -6 ]|V | |P
S0, 861"\ |2gr(3r 217 3r 2|00 M7
svi’| | L7 |-6 3L 6 -3L{|v] | Y
30 3L LF 3L 2L |g0| |40
3T (13
= _ L #
“. 6 3L -6 3L 0 o' .
(1}
%9, sz 202 3L 12 o of[%] [M
8\" 5 v (13
) _ |OVB| |2EI| 6 3L 6 3L 0 of/¥s| |F
B veal | 5 , ) o [~ (E4)
sl L7 3z L* 3L 20° 0 of|%| |z
dve 0 0 0 0 0 0||ve [.;
50, o 0o o o0 o0 of|o. 5
(2)) ; (2 [ )
5yt - (2) 2)
oV, 6 3L -6 3L||M F 6
505 2ET nr? 2 || 68" MP Il L
50 = 1 26038 2L 3L L L O e N P
s | 2|6 3L 6 3L||v@| || 12]6
2 2 2 " a3 —L
33(2-} 3L L -3L 2L 9(2-3 1'.4'{2"’]
S _ S 0
O oo o0 o o ol |, 0
89, 000 0 0 o0]f|®% b 0
5 8v 00 6 3L -6 3L||v 1 .
Q% = y %’ 2 o fa S 42 +u_£ - (E3)
35| 2|0 0 3L 2L 3L I*]|6s| |Mi 12| L
dve 00 -6 3L 6 -3L||ve| |F® 6
136, | 0 0 3L L' -3L 21%|e.] [y@ -L|
The total potential energy of the beam, 8£2 = 30" + 80", can be written as in Equation (E6).
T F
’ B T v 1
V4 6 3L -6 3L 0 0] iy 0
89, 3L 21% 3L 12 o o ||% .:1 2 0
sy 18| 266 32 12 0 -6 3p||vs|_|F+R| wi)6 i
8, | L’ 3L 2 o 4r* 3L L*||%| [MD+mP| 12[L
8, 0 0 -6 -3L 6 -3L||ve ey 6
30, o 0 9L 17 BE 3%||8 ol -L
J L 440 ﬁd{(zzJ P

Step4. We note that there are no external forces or moments at B and that the relationships between the element
nodal forces and moments and the reaction forces and moments at 4 and C can be written as in Equation
(ET).

R T L

(1) (13 {2 2y (ET}
MY = M, M +MP =0 M = M,
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Substituting Equation (E7) into Equation (E6), we obtain the potential energy function as shown in Equation (E8).

51 i i 2

8v, 6 3L -6 3L o0 0]|Ya| [R4 0
BE, 3L 2L 3L [ o o ||%4] |M 0
ov il 2 19 _ v 0 ) 6
YR B 2_}1;1 6 =3L 12 0 6 3L Bl +14_L (ES)
0| | L2 |3z 12 o 41> 31 (|9 |O] 12|L
dve & BE 6 -3 |% Re 6
50 0 0 3L L 3L 2078 |Mc -L
The displacement and slopes at 4 and C are zero as shown in Equation (E9).
v, =0 g; =0 Va=0 By= D
A A [ & (& (Eg)

ov, =0 86,=0 Ove=0 80,.=0
Substituting Equation (E9) into Equation (E8), we can write the potential energy function as Equation (E10).

8vy)" v ; :
8 =17 (@12 Ry +“'—L6] (E10)
805) \ L’ |0 423 10s) 12(L

By the principle of minimum potential energy, the virtual variation of potential energy due to virtual displacement must be zero
(i.e., 8Q = 0). Since the virtual displacement cannot be zero, the remaining terms in the brackets in Equation (E10) must be
zero, and we obtain the set of algebraic equations shown in Equation (E11).

2EI|12 0 |[Ve wL)[6
= Ell
i [0 4£:H93} ( 12){L} o

Solving the above two equations shown in Equation (E11), we obtain the results shown in Equation (E12).

4 J 3.
- &) = _ & )
R (4851 % = {Gerp (E12)
The reaction force and moments at.4 can be found from the first two rows of Equation (E8) as shown in Equation (E13) and (E14).
= M _ M (wL wi?
= E i S [6 asED) (96,-'* ;)] (E13)

ANS. R, = 1‘—;wL

2E1 2E1 wlL wi®
M, = 2= 2 HEL e,
1, [ 3Lvp+L° BB] = [3L(48EI) L (-96E1j] (E14)

ANS. M, = 4—3’8%3

COMMENTS
1. The primary difference in the solution procedure in this example and in the axial rod problem of is that two rows and two
columns are added instead of one at the shared node of the two elements. This is not surprising, since the shared node has 2
degrees of freedom.
2. In accordance with Figure 9.12 the negative sign on deflection at 3 implies that it is downward, and a negative sign on slope
implies clockwise rotation, which makes intuitive sense if we visualize the deformed shape.
3. In accordance with Figure 9.12, the positive signs for reactions implies that force 1s upward and the moment 1s counter-

clockwise.

9.6 FINITE ELEMENT EQUATIONS IN TWO-DIMENSIONS

In this section the equations for the finite element method in two dimensions are presented. The strain energy density in two
dimensions can be written in matrix form as shown in Equation (9.27a) and (9.27D).

. 1
By = E[Gn.a,. T Oy + Ty 'xJ] = _{G} {C} @273
GX." SI'X
{oc}=19, fe} =148, (9.27h)
Ty Y.‘ry
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Hooke’s law for plane stress [Equation (8.4a)] and plane strain [Equation (8.5a)] can be written in matrix form as shown
in Equation (9.28a) through (9.28¢).

{o} = [E]{s} (9.28a)
| Y 0
o D for plane strain (9.28h)
(I-v7) (1-v)
0 0 7
{(1-v) v 0
[E] = MT*-\) v (1-v) 0 for plane strain (9.28¢)
0 0 (1==2W)
2
Substituting Equation (9.28a) into Equation (9.27a), we obtain Equation (9.28d).
1 1 i 1
Uy = 3103 (e} = 33 [E] (s} = 3(=)[El(e) (9:284)

The strain—displacement relationships, Equations (8.1a). (8.1b), and (. 1d), can be written in matrix form as shown in
FEquation (9.29a).

-
£ 0
(e} = |o E{”} (9.29a)
ayvl v
R
Oy Ox]

The displacement at the element level can be approximated by using kinematically admissible functions as shown in
Equation (9.29b).

3

{e) = l;é’? X, d A{e) ) e 7 ie"l (2, 9,20}
W0 =Y ) wd @ =Y ) (9-29)

i i=1

Equation (9.29b) can be written in matrix form as shown in Equation (9.29¢) and (9.29d).

{e) y
{u } _ El 0 £ 0 .. .. f 0]{ £ B
) R O B

Y = W, ™ L (9.294)

n F

Substituting Equation (9.29¢) and (9.29d) into Equation (9.29a), we can write the strain in an element as shown in Equa-
tion (9.30a) and (9.30b).

(e} = [Bl{d"} (9.302)
o o o |
ox . dx . Ox .
[B] = oh oh % (9.30b)
05 05 o o0
| &y Ox &y ox 7 T ady Ox

The matrix [B] in Equation (9.30b) is called the strain—displacement matrix. Substituting Equation (9.30a) into Equation
(9.28d), we obtain the stram energy density for an element as shown in Equation (9.31a).

U = 31y (BYLENB ) 9.312)

The strain energy for the element can be written as shown in Equation (9.31b) and (9.31¢).
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U = [UPdr = [ Ld BYIENBIUA v = LY K1) (©:31b)
e el
[KJE}] o I [B]T[E]IB]d]—— (9.310)
e

The matrix [K(‘?J ] is the element stiffness matrix.
9.6.1 Constant Strain Triangle

The constant strain triangle (CST) is the simplest element in two dimensions and was one of the first to be used in finite element
analysis. As the name suggests, the strain in the element is a constant, which implies that the displacements are linear functions
of x and y as shown in Equation (9.32a).

(e}

=gy tax+ay and  vVO%xy) = byt bx+ by (9.32a)

There are three constants for # and v in Equation (9.32a). To evaluate the three constants, we need nodal displace-
ments at three nodes, which define a triangle shown in Figure 9.14. The strains in the element can be determined and are found
to be constants, as shown in Equation (9.32b).

(&) _ 6:."“ — a(e_r - a\’(g) Y[e] _ @ure" + 0\?"83
g ax 1 ¥y Qv v ay ax
The constants in Equation (9.32a) can be solved in terms of the nodal displacements of the three nodes shown in Figure
9.14 to obtain Equation (9.32¢).

= bg =dat 61 (9.32'))

3 3
le) (e} (e} (e)
W)=Y fen? V=Y fE@nv 9.320)
S 5
Consider the u displacement at the jth node as given by Equation (9.32d).
=
W) =Y fleyu” = u? (9.32d)
i=1

If Equation (9.32d) 1s to be valid, the interpolation functions must satisfy the condition given by Equation (9.32¢),
which is similar to the property of Lagrange polynomials given by Equation (9.4a).

b=y

e (9.32¢)
13 JJ

1
J?(xj'a ,Vj} = {0

The plots of the interpolation functions shown Figure 9. 15 are constructed by using the observations that these functions
are linear and must satisfy Equation (9.32¢).

Figure 9.14 Constant strain triangle.

The strain—displacement matrix [B8] can be found as shown in Equation (9.33a).

Ya—¥3 0 | 0 Y1=¥: 0

1
[B] b 214(“ O .‘!C3—x3 O .X'l—x3 O x:—.‘,‘l (9’333)
Bl S S e Sl o SN W S Sl & RN ¥ St R 6 Bl 6
{e 1
A = S[@=x) s =21) = (3 =) (6 —x3)] (9.33b)
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fS(xay)

ﬁ(x? y) i
' \

X
—~
-

1
Figure 9.15 Interpolation functions for a CST.

The A®) in Equation (9.33b) is the area of the triangle. The stiffness matrix can now be constructed from Equation
(9.31¢). Noting that the matrices [B] and [E] are constants in Equation (9.3 l¢) and that the volume of the triangular element 15
area A®©) multiplied by the element thickness £€), we obtain the stiffness matrix given by Equation (9.33¢).

(K] = [BJTIET[B][I df] = AR TEIB) 9-33¢)
e
The load vector can be constructed as discussed in Section 9.3.2, and the solution procedure would then proceed as dis-

cussed in Section 9.3.9. There are many issues and concepts in application of the equations described in this section, and the
reader is referred to finite element textbooks for additional details.

EXAMPLE 9.4

Obtain the strain—displacement matrix [B] for the constant strain triangle given by Equation (9.33a).

PLAN

Equation (9.32b) shows that the strain expression does not contain ay and by. The constants @y and a; in Equation (9.32a) can
be found in terms of the nodal displacement in the x direction. From these expressions, by replacing « with v and ¢’s with b’s,
the constants b, and b, in Equation (9.32a) can be determined. The strain expressions can be written in matrix form and the
strain—displacement matrix [B] determined.

SOLUTION

We use the coordinates of the three nodes substituted in Equation (9.32a) and the displacements equated to the nodal displace-
ments to obtain Equation (E1) through (E3).

ag+ax; +ayy, = f;fle) (E1)
ag+ax, +azy, = r;f;') (E2)
(e}

ap+ayxy+asy; = iy (E3)
We can use Cramer s rule, to find the constants. The determinant |D)] of the matrix on the left-hand side of Equation (E1)
through (E3) can be written as shown in Equation (E4)

I. X1 N
ID| = | 1 Xa ¥ (E4)
1 x5y

Row 1 in Equation (E4) can be subtracted from rows 2 and 3 and the determinant evaluated from the first column, as shown in
Equation (ES),

1 x M
Dl =10 (x—x) On—»)| = (2 =x) (Vs =) = (2= —x) = 24 (E5)
0 (—x) (-»)

where A is the area of the triangle as given in Equation (9.33b).
By Cramer’s rule, the constants ¢y and a; can be found as shown in Equation (E6) and (E7).

i (&)

iy 1
] i 1 fep [F=3] (3] —
= — ] = = —Va = - ceo L
ay LD' i yL; .]"2 ZA[ iy (y_’. }_} - Uy U"S .Vt) L5 (yh yl)l (hﬁ}
I “%ﬂ Y3
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1 (e)
l o |
2] (el (e
2Tl uy! | = ﬁ[”(l (3—%2) =2 (e = %)) + 057y - x,)] (E7)
(e}
1 x; s

The constants by and b, can be written by replacing the #’s with ¥’s as shown 1n Equation (E8) and (E9).
1

by = 3 7 =y V0 =) - v - 1)) (ER)
s = I =)~ =) + 9 =) (E9)

The strains in the element can be obtained by substituting Equation (E6) through (E9) into (9.32b) to obtain Equation (E10)
through (E12).

{e 1 ey (e {e
er = 3700 0 =ya) #1570 —y) + 45 (1 - )] E10)
E'vf’ = ﬁ[\lﬁ”(x?. —X) + V5 (%) —%3) + V5 (53— x,)] (E11)
@ _ 1 uyes —x0) + 1y ey —063) + 4 (30— xy) (E12)
.ry 2‘4 ieJ S

+ 9 G2 —¥a) V5 =) + V5 (1 —y2)
Equation (E10) through (E12) can be written in matrix form as shown in Equation (E13).

(&)
i,

: [e)
£ ¥

" yi=ys 0 y»-» 0 y-y 0 || @

”fe] P (3] — = - 2 b 2] -
{8 =g 7" Al 0 w-x 0 xy-x3 0 x-x) (7 [B1{d"} (E13)

( Va
Y' e} X=Xy Vo— ¥z Xy—X3 ¥z— )1 Xo—XK ¥V1— MW 5

Xy 7 . % > = i (&
U3

v

From Equation (E13). we see that the [B] matrix is as given by Equation (9.33a).

COMMENT

The constants ag and by in Equation (9.32a) have no effect on the stiffness matrix and hence none on the nodal displacement
values. However, if the displacement at any point inside the element were needed. the values of these constants in terms of the

nodal displacements would be needed (see Problem 9.24).

9.7 CLOSURE

In this chapter, we used one-dimensional structural elements to elaborate the procedure for analysis by means of the finite ele-
ment method. Familiarity with the following concepts will help in reading manuals and documents accompanying finite element
software packages: nodes, elements, mesh, discretization, interpolation functions, Lagrange polynomials, Hermite polynomials,
element stiffness matrix, global stiffness matrix, element load vector, nodal forces, nodal displacements, mesh refinement, -
method, p-method, and »-method.

The concepts introduced in this book can be further developed in solid mechanics courses covering subjects such as
plates and shells, the finite element method, elasticity, plasticity, continuum mechanics, fracture mechanics, the mechanics of
composites, and biomechanics.
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lus of elasticity £ = 200 GPa. Bars AP and BP have lengths of
PROBLEMS : : o : =
Lyp =200 mm and Lgp = 250 mm, respectively. Determine the

9.1 Inalinear axial rod element. the nodal displacements were found to displacement of pin P, using linear elements to represent each bar.

beuﬁ”

= 0.05 mm and ug“ = 0.25 mm . The length of the ele-

ment is 400 mm, the cross-sectional area.4 = 50 mm?, and the
maodulus of elasticity &£ = 200 (GPa. Determine (a) the displacement
from nede 1 at 100 mm. (b) the axial stress from node 1 at 100, and
() the strain energy in the element.

9.2 Inaquadratic axial rod element. the nodal displacements at the three
equally spaced nodes were found to be

W =00027in 4 =00098in &l = 0017 in

If the length of the element is 6 inches and the modulus of elas-
ticity £ = 10,000 ksi. determine (a) the displacement at 2 inches
from nede 1 and (b) the stress at 2 inches from node 1. Figure P9.8

9.3 Inabeam element of length 20 inches, the nodal displacement 9.9 A force =20 kN is applied to a pin as shown in Figure P9.9.
and slope at the two end nedes were found to be:

Both bars have a eross-sectional area 4 = 100 mm” and a modu-
‘,f]“ = _0407 in ‘,g” = 0407 in lus of elasticity £ = 200 GPa. Bars AP and BP have lengths of
Lp =200 mm and Lgp = 250 mm. respectively. Determine the
o' = —0.012 ol = 0,012 dis , e ‘ ;
2 isplacement of pin P, using linear elements to represent each

Find the deflection and slope at the midpoint of the element. bar..
9.4 For the axial rod shown in Figure 9.8, find the stress at point B,

the displacement at point C, and the strain energy in each ele-

ment. Use the following FEM model: one linear element in AB

and one quadratic element in BC. Compare your results with

those shown in Table 9.1.

9.5 For the axial rod shown in Figure 9.8, find the stress at point B,
the displacement at point C, and the strain energy in each ele-
ment. Use the following FEM model: two equal linear elements
tor the entire rod AC. Compare your results with those shown in
Table 9.1.

9.6 The axial rod shown in Figure P9.6 has an axial rigidity

EA = 15(10% Ib. The rod is to be modeled by using a linear ele-
ment for 4B and a linear element for BC. Determine the displace-
ment at point B and the reaction force at 4.

Figure P9.9

9.10 A force /=20 kNN is applied to a roller that slides inside a slot
as shown in Figure P7.10. Both bars have cross-sectional area

%~ 2000 1b [ A = 100 mm* and modulus of clasticity £ — 200 GPa. Bars AP
B — and BP have lengths of L ;p = 200 mm and Lgp = 250 mm,
f—2000 1b f i el
| ) . respectively. Determine the displacement of the roller and the
20 in —>=<1 30 in = axial stress in bar 4, using linear elements to represent cach bar.

Figure P9.6
9.7 A force F =20 kN is applied to the roller that slides inside a slot as
shown in Figure P9.7. Both bars have eross-sectional area
A =100 mm? and modulus of elasticity £ = 200 GPa. Bars AP and
BP have lengths of L ;p =200 mm and Lgp = 250 mm, respec-

tively. Determine the displacement of the roller and the axial
stress in bar 4, using linear elements to represent each bar..

Figure P7.10
ANS. v, = 03 mm Rp, = 2.89 kN

9.11 A force F= 20 kN is applied to a roller that slides inside a slot

as shown in Figure P9.11. Both bars have cross-sectional area

A =100 mm? and modulus of elasticity £ =200 GPa. Bars AP

and BP have lengths of L;p = 200 mm and Lgp = 250 mm,
Figure P9.7 U . . .

respectively. Determine the displacement of the roller and the

9.8 A force =20 kN is applied to a pin as shown in Figure P9.8. axial stress in bar A, using linear elements to represent each bar
Both bars have a cross-sectional area A = 100 mm? and a modu-
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Figure P9.11
9.12 A steel (G, = 12,000 ksi) shatt and a bronze (G5, = 5600 ksi)
shaft are securely connected at B as shown in Figure P9.12. The
diameter of both shaft is 2 in. Determine the maximum torsional

shear stress in the entire shaft and the rotation of the section at B,
using one linear element to represent cach segment, 4B and BC..

50 in-kips

Figure P9.12
ANS. ¢z = 0.0516 rad

9.13 A solid circular steel (G = 12,000 ksi. £y = 30,000 ksi) shaft of
4-inch diameter is loaded as shown in Figure P9.13. Determine
the rotation of the sections at B and ' and the reaction torque at

A, using one linear element to represent each segment, AB, BC,
and CD.

T, = —40.52 in- kips

90 in-kips

240 in-kips

Figure P9.13

9.14 Starting with Equation (7.38¢), obtain the first row of the element
stiffness matrix given in Equation (9.26a).

9.15 Starting with Equation (7.38¢). obtain the second row of the ele-
ment stiffness matrix given in Equation (9.26a).

9.16 Starting with Equation (7.38c), obtain the third row of the ele-
ment stiffness matrix given in Equation (9.26a).

9.17 Starting with Equation (7.38c), obtain the fourth row of the ele-
ment stiffness matrix given in Equation (9.26a).

9.18 Starting with Equation (7.38d), obtain the element load vector
given in Equation (9.26a).

9.19 Using just one beam element. determine the detlection and slope

at the free end of the beam shown in Figure P9.19. Assume that
ET is constant for the beam.

¥
W

Figure P9.19

Problems 317

9.20 Using just one beam element. determine the deflection and slope
at B1n the beam shown n Figure P7.20, Assume that £/ is con-
stant for the beam.

Figure P7.20

ANS. v, = | “"54)

O6ET R

9.21 Using two beam elements, determine the deflection and slope at
the free end and reaction force at £ in the beam shown in Figure
P9.21. Assume that EJ is constant for the beam.

Figure P9.21

ANS. v - L -

(2L

12E1

9.22 Using one element, determine the deflection and slope at mid-
point of the beam shown in Figure P9.22. Assume that £ is con-
stant for the beam.

K w

Figure P9.22

9.23 Using a single beam element for 4B and a single beam element for
BC in Figure P9.23, determine (a) the slope at 4 and B and (b) the
reaction forces at A and B,

Figure P9.23
9.24  Determine the constants a, and b, in Equation (9.32a).
9.25 Ina constant strain triangle, the continuity of the displacement at
the nodes also ensures continuity across the line joining the

nodes. To prove this statement, show that the disp]a-.wt:rm:nlr"J along the
line joining nedes 1 and 2 depends only upon the nodal values of
nodes 1 and 2.
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