M. Vable Advanced Mechanics of Materials: Plates

Plates

A plate is a flat solid body whose thickness is small compared to the other dimensions and is subjected to bending
loads.

* Examples: Floors, ceilings, windows, disc brakes, ship decks, truck beds

The learning objectives

* Understand the theory of thin plate bending, its limitations, and its applications in design and analysis.
* Understand how to incorporate complexities in plate theory.

Limitations

1. The mid plane of the plate is flat.

2. The thickness of the plate A(x,y) is an order of magni-
tude smaller than the dimensions in the x or y direc-
tion.

3. The thickness of the plate A(x,y) and transverse load-
ing p(x,y) vary gradually.
We are away from the regions of stress concentration.

No in-plane loads-- pure bending.
max|csZZ| and « max{|csxx|, S |Txy|} h(x,ﬁ
The loads do not vary with time, or vary so slowly

(quasi static problem)

8.  We restrict our selves to linear theory.
Kirchhoff-Love plate theory: 0 <w < 0.2/ ----Linear 7 )
Von-Karman plate theory 0.342 <w < h----- Non-lin-
ear theory.

Membrane theory: w > 2.
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Thin plate theory

* Our objective is to obtain equations relating the bending stresses 6y, 6y, and 1, to internal forces and moments
and obtain the boundary value problem governing the transverse deflection w of the plate

Displacements

External forces
and moments

Internal forces
and moments

Assumption 1 Deformations are not functions of time.
Assumption 2 Squashing— dimensional changes in the z direction, is significantly smaller than bending.

€,, Zg—‘;~0 — u = u(x,y,z) v =v(x,,2) w = w(x,)y)
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Assumption 3 Plane sections before deformation remain planes after deformation.

*  Displacements # and v are linear function of z.

%
S SCECIEECEEET ;-
B A,
uo x) y) w(x} y) /
N, > g
~ Bi y
Z ~ 2 4,
T~ v ‘—Zsinwy: 2y,
== o @
/ ox ox

Yy

A

At EEEEEE =
B
V,O x, y) w(x)y)
N\
= —=>
SO y
Y 1
~_ v
=~ — -1
7 Q-3
dy/  \0y
Y
MR uo(x,y)fzsz'nlpy VRV (X, Y) -zZsing, w = w(x, V)
The rotations y, and y, are not functions z. «,(x,y) = 0 v,(x,y) =0 If there are no inplane forces.
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Assumption 4 Plane sections perpendicular to the plate mid surface remain nearly perpendicular after deformation.

: : : 5| =
The right angle at C remains a right angle at C;. y, = tan (%V) Wy, = tan ]@—D
Assumption 5 Deflection and its derivatives are small.
: _ “lrow ow 170w ow
simyr =y, and SIg, = tan (a) ~ (a) and tan (@) s (@
o 6w) N_(@w) N _Oow  Ou_ _ Ow_ Ov
U z(a VR z@ W= wix, y) = P a+§NO B @+§~0
Assumption 6 Strains are small
) ) 2
c :5_u:_a_w g :a_V:—a—w :@Jra_V:—Z—aw
T ox o’ ooy 8y’ oy dy Ox Oxdy
* The strains vary linearly with z.
* The maximum strain will be either on the top or bottom surface of the plate.
* Curvatures of deformed curved plate are O w/ox”, Otw/ ay2 . and d*w/ dxdy .
Material Model
Assumption 7 The material is isotropic.
Assumption 8 The material is linearly elastic.
Assumption 9 There are no thermal or non-mechanical strains.
» The plate 1s 1n state of plane stress. o, = £ (5, T vE,) Sty = 2 = (5,,+ vs,,) T = By
(1-v") (1-v")
K 62 62 £ 62 62 62
—Ez W w o W W _ W
G, = 5 (_2+ V_ZJ By = 5 (_ZJr V—J Ty = —ZGzaxay
(1-v)\ox oy (1-v)\oy ox
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Static Equivalency
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n, = onxdz n,, = Icyydz n,=n, = J' Txydz
h h h
m,. = Izcxxdz m,, = Izcyydz m,, = m, = Izrxydz q, = I T, dz q, = I Tyzdz
h h h h h

* All force stress resultants will have the units of force per unit length

* All moment stress resultants will have the units of moments per unit length.

The internal shear forces ¢, and ¢, are necessary for force equilibrium in the z direction, which implies that the
stresses 7, and t,, cannot be zero but must be small.

* Average values of these stresses can be found by dividing the internal shear forces ¢, and ¢, by the thickness.

The maximum of these average values must be an order of magnitude smaller than the maximum inplane
stresses.

max|t, | and max|ryz| «max{|o,,

Tol}

2 ny 2
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Location of neutral surface (origin)

2 2
@ _Owpe Ez . Owe Evz . _ . :_galjgzdzz

ox'y(1-vh  ay"y(1-v) o’ (1-vH (11— i Oxdy)
Assumption 10 The material is homogeneous across the thickness of the plate

2 2
:6w Bz +6w Evz & =0 i

" yy

2 2 2 2
n, = |:8v2u i 5 +8v2u Evzj|jzdz— 0 ny,, = |:61;f E2 +61;} Evzj|jzdz— 0 nxy:—ZGal zdz
ox (1-vy &y’ (1-vH]; oy’ (1-vh) ox’ (1-v)]; 2l

. _[ zdz = 0}, The origin and the neutral surface must be at the mid surface for pure bending of plates.
h

Stress formulas

2 2 2 2 2 2 2 2 2
m,. = _[6_1;ij £z 5 dz—[a—vﬂj EVZZ dz m,, = —[a—V;JJ‘ He 5 dz—[a—v;JJ‘ Ev22 dz m,, = —Z(Z—ZJ Gzzdz
Ox" /3 (1-v7) oy /(1 =v7) 0y /3 (1-v7) ox™/3(1=v7) *ay b
As per Assumption 10 of homogeneity across the thickness, we obtain
2 2 2 2 2
O | | N e [ R R L A R
(1 -v)-|L\ox ay B (1 v \&y Ox h XV 1%

. b/
I zdz = j
h —h/2

2= h/12

Moment-curvature equations

2 2 2 2 2
3
Ox oy oy ox 0x0y 12(1 - v7)

* D iscalled the bending rigidity of the plate.

_ mxe _ myyZ B mxyZ
Cyx = 3 ny B 3 Txy o 3
(h /12) (h /12) (h /12)
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* The bending stresses in plates vary linearly through the thickness and will be maximum at top and bottom sur-

face of the plate.
Equilibrium
Force equilibrium in z-direction:

oq, o4
| Y = X,
> 3 P,(x, )
d.
‘Iy X
m.__dx
yy
myxdx
4,4y
d ax
" p,(x y)dxdy
mxxdy
om
[mx S dxjd
dy y 6x
oq
+_*g
/‘\ qx ox
om
om
yy
m._ +~_"7dp|dx yx 0
/ i [myx = dyjd
g ya
oq
q + dy|dx
Y 0oy

Equilibrium of moment about the x and y direction at point O.

om,. om,. om
qx = i +_y
ox oy




M. Vable

Advanced Mechanics of Materials: Plates

Differential equation

a2

£

%,

)
)

7

@HD“ - ){g—gy} }

2

Assumption 11 The plate is homogeneous in the x and y direction.

Assumption 12 The plate is of uniform thickness.

h, E. v, and D are constant.

| A R o B

2 2
5, VZVJ n V[a V;J H = p%))
oy Ox

2 2 2 2
q, - —Di{a_‘”zha_‘;’] - pZ(V*w)| g, = _DEF_‘;HG_‘;”] — _p2 v
0x| oy Ox 0¥ | ax ay oy
4 a4 4
DVt = D[a LIRS AL ’j’] = p.x.)
Ox Ox 0y @y
2 2
where, V¥ = %Jriz is the Laplace operator and v* = v2V? is the bi-harmonic operator.
ox” Oy




M. Vable

Advanced Mechanics of Materials: Plates

Boundary Conditions

Fourth order partial differential equation requires two conditions at each boundary point.On boundary point there
are three internal quantities, a shear force and two moments. These three quantities need to be reduced to two.
Kirchhoff s arguments

3 3
om cm
v —qx+a_xy_p{a_w+(2 ks } Vy_qy+a_yx_p{a_w+(2 Wi ¥ }
Y Ox Oxdy x oy dyox
Corner Force
a2
_ _ _ w
RCOY‘?’I@Y‘ = mnyrmyx = 2mxy = —2D(1 —V)M
ow
On x = constant Specify [, or w] and I: a—:|
On a corner Specify [R, e OF W]
On y = constant Specity [V, or w] and I: g—j|
¥
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Boundary Condition

Type of support 2 o
P HPP Specify [V, or w] Specify | m,, or %V
Clamped = w(a,y) = 0 W (a,y) _ 0
I ox
Slmply xX=a W(Cl, y) = O mxx(“? y) = O or
Supported 2
a_w(a7 y) =0
ox*
Free x=a V(a,y) = 0 or m,(a,y) = 0 or
N L
{a_‘;“r(z-v) d 2} =0 {a_‘;JFV_‘;}
ay ayax v=a Ox ay x =
Roller x=a Via,y) =0 or MW(a,y) _ 0
3 3 Ox
[a_\;/Jr(z_V)awz} =0
oy oyox .
Elastic d X, Via,y) = 0 = K;w(a,y) m_(a,y) = Ke%(a’ »)
193

mxx(a7 y) ( ¢|:

ow
)Kea(aay)

Via,y) *KLW (a,y)

10
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C5.1 The cross section of laminated plate made from two materials is shown below. Both materials have the
same Poisson’s ratio but different modulus of elasticity. The displacement field is given
u~—(z-z,)(0w/0x) va—(z-z,)(Ow/0y) wrw(x,y)

where, z is measured from the mid surface and z,, is the location of the neutral surface. (a) Determine the value of z,,

assuming all assumptions except for material homogeneity across the thickness are valid. (5) Obtain stress formulas
and the differential equation governing the deflection of the laminated plate. (¢) By substituting £, = E,, show that

the results for parts a and b give the same results as classical plate theory for homogeneous material.

3

11
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(52 In Mindlin-Reissner plate theory Assumption 4 of planes sections perpendicular to the plate mid sur-
face remain nearly perpendicular after deformation is dropped to account for shear. (a) Starting with the displace-
ment field below obtain the stress formulas and differential equations if all assumptions except Assumption 4 are
valid.

U= —zY (X, ) v —Zy (X, ¥) w = w(x, y)
(b) Show the results reduce to those of classical plate theory by substituting y, = éw/0x and y, = éw/dy.

12
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Navier’s solution of rectangular plates

In 1820, Navier found the solution for a rectangular plate that is simply supported on all its boundary.

/< 7
Simply Supported

a
; ; (X))
£

/ Simply Supported
Y

Differential Equation

4 4 4 (. 7)
ow, ,0w  ow _P5)

ot ot o D

Boundary Conditions

2
Onx =0 w(0,y) =0 5_‘;/(0,)/):0 Onx = a w(a,y) = 0
ox
o*w
Ony =0 w(x,0) =0 _z(x,O):O Ony =5 w(x,b) =0
oy
Only even derivatives in the boundary value problem.
Even derivatives of Sine (Cosines) functions produce Sine (Cosine) functions.

Sine functions can satisfy all boundary conditions.

2

a_w(Cl:y) = O
8x2
Wi, by _
8y2

13
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0 [s2]

m=1n=1

w(x, y) = Z Z Wmnsin(mn%z)sm(

nn%)

[se) 0

p(x,y) = Z ZPmnSm(mnﬁ) an(nn%)

m=1n=1

where, W, and P, are constant coefficients to be determined.

* The series consists of independent functions.

* The infinite series 1s complete for this class of problem.

Substituting w(x, y) and p_(x, y) we obtain

nin

1

P

i

) Dn4[(

m
a

) (2]

To determine the constants 7, we use the orthogonality conditions of Sine functions given below.

orthogonality condition: I sin(mB)sin(nB)do =

n

0

NI o

5, 1, o yysn(ma) ()
P = &
- ab—[o '[0 pAx,y)sin| mn= | sin nmy ey

m¥#*n

m = n

14
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Uniform distributed load p (x,») = p,

0 m’n:2’456" 0 msn:254,6.‘
16p
=116 _ . ) |
Pmn zpo m,n N 1,3’5. ) ) ) Wmn 6 m 2 7 2 2 man ]-5 355
nmn Drn mn[(zj +(g) :I
16po & o0 1 | o )
wix,y) = Db Z Z SNE il len(mnz)sm(nng)
m=1,35 + n=135. . m”[Z “\5 }

w0 & m 2 " 2
m_(x,y) = (161?} I:( a) Z"(b) 2:| zsin(mﬂ;f) Sin(nn’g)
L Y T TP mn[(%) +(§)] a

Maximum values of w and m,, at x = a/2 and y = »-2----Center of plate

Convergence Study

Square plate: » = a Poisson’s ratioof v = 1/3.
B 16p0a4 i ” (_1)(m+n—2)/2
Wirax — D 6 Z Z 5 5
¥ om=1,35- - n=1,35. . molm tn]
2 0 o
B 16poa [m2+vn2](_1)(m+n72)/2
(mxx)max 4 Z Z . 2
T Com=1%5% « m=L85= » mn|m”+n"]

15
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A ;
% difference = ~-—1%x 100 where 7, is the value after # terms.

16

Convergence Study

No.of |m|n W (107 (m_) (107
terms — —
(p,a /D pa
value % diftfer- value % differ-
ence ence

i 1 |1 | 41606 -2.4278 54.7519 -11.8235
2 3 |1 | 41052 -1.0621 49.6417 -1.3867
3 1 |3 | 4.0497 0.3036 47.4517 3.0863
4 3 |3 | 40554 0.1631 48.1276 1.7057
5 511 | 4.0603 0.0419 49.3587 -0.8087
6 1 |5 | 40653 -0.0793 49.8123 -1.7350
7 513 | 4.0643 -0.0557 49.5470 -1.1933
8 3 |5 | 40633 -0.0321 49.3828 -0.8580
9 5|15 | 4.0636 -0.0386 49.4703 -1.0369
10 7 |1 | 40626 -0.0152 49.0074 -0.0912
11 1 |7 | 40617 0.0082 48.8447 0.2411
12 7 |3 | 40619 0.0024 48.9656 -0.0058
13 3 |7 | 40622 -0.0034 49.02453 -0.1261
14 7 |5 | 40621 -0.0013 48.9754 -0.0238
15 517 | 40620 0.0009 48.9400 0.0466
16 7 |7 | 40620 0.0000 48.9628 0.0000

16
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[ ]
- 107
w, (107) (m) (107)
2 vs. number of terms = vs. number of terms
(p e /D p,a
4.1800 56.0000
e L 55.0000 ‘
\ 54.0000
4.1400 \
\ 53.0000 \
4.1200 52.0000 \
4.1000 \ 51.0000 \
\ 50.0000
4.0800
\ 49.0000 W—Q—‘—k
4.0600 W" 0 —0——t—0—0—4—4 48,0000 \/
4.0400 T T T 1l 47.0000
0 5 10 15 20 (6] 5 10 15 20

* differentiation increases and integration decreases the error of approximation.

17
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Nadai-Levy solution of rectangular plates

1. Plate is simply supported on two opposite sides as shown below. The other two sides can have any type of support or boundary con-
ditions. The boundary conditions at x = 0 and x = « can be written as

2 2

0 0 ,
w(0,) =0  =S0,»)=0  w@y)=0  =(ay) =0 (5.12)

ox ox

2. The loading p. is only dependent on x, that is, p_(x,y) = p.(x).

p(x)

b/2

b2

/

a
53

* the deflection solution in two parts: w(x,y) = W (%) +w,(x, »)
4 4 4 4
dw, p.x) ow, 0w, owy, _

ek —ra—t =0 (5.22)
dx D Ox ox’ay”  ay

18
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Homogeneous solution

wy(x,y) = ZZZIHm(y)Sin(mnx/a) (5.2b)
Substituting (5.2¢)
4 2d2H i
dH
(m—n) Hm—z(@) — " "= 0 (5.2d)
“ 7 dy dy

The homogeneous solution 18

wi(x,y) = ZZ:I {[4,, + D, (mny/a)]cosh(mny/a)+ [C, +B, (mry/a)]sinh(mny/a)}sin(mny/a)

Particular solution

Method I:
wp(x) = 22:1 W, sin(mnx/a) p(x) = ZZZIPmSm(mnx/a)
_(_a AP, _2ta _
W, = (m_ o P, = ;1.[0 p(x)sin(mnx/a)dx

Method II: Direct integration for given value of p_

For uniform load p_ = p,.

v = Bl ]

19
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£33 The simply supported plate shown below is subject to a uniform distributed force of p,,. (a) Obtain a
series solution for deflection w using Nadai-Levy Method. (b) For maximum deflection w and bending moment m,.,.,
compare the convergence of Nadai-Levy Method with Navier’s method for a square plate and Poisson’s ratio of.

v=1/3
/= -
Simply Supported

a
% %))

/ Simply Supported
Y

20
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Circular plates

z(w)

Axisymmetric: Loading, material property, and geometry are independent of the angular coordinate q.

Solution is independent of angular coordinate 6
tw = w(r) ow/00 = 0 ow/or = dw/dr

1. Displacements

. (8\4/) _ g(&w) - dw
- 2= ve = —\=5 waw(r u, =~z Vg =0 waw(r)
2. Strains
> 2
_ 8ur B ow _ dw
o or el ) & = F 7
By dr
2 d
w1 (1ow 10w 00 = “rar
006 7 rae rar r2862
Yo T 0
2
100, v Vo _ ,[low  1ow
T e T rorod 2060

21
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3. Stresses
E E
Opr = 2 (Srr+V866) Cpo = 2 (866+V8rr) 0 Gyre
(1-v7) (1-v7)
2 2 2
5, = 25 (a_ery&_w + X@_wj g = B (d_eryd_Wj
rr (1 B Vz) 87”2 ror 7”2862 rr (1 - Vz) drz rdr
2 2 2
o _ -2k (l&w+18w+vawj o -2k (l&erdej
= S L E T g H 06 = o i I B
WA BHIE 27 57 (1—vHIor g2
& Yo T 0
.= oG 0w __1ow
o roréd 200

4. Stress Resultants

m,,. = Icrrdz myy = Iceedz
h h

m.y =

Gy = Irezdz

22
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Internal Moments

2 2
ow véw v dw vow
m,, = D(_2+;81” + —2—2] m,.. = —D[ 5 ;EJ
0 r e dr
18 1 62 62 1d d2
ror e ar rdr g,
m . =0
_ 10w 1ow 78
Mo = ~DU _")[rarae _rzﬁJ
Internal Shear Forces
Jd .2 Do  _2
q, = —D~(V'w) q4g = ——75(V' ) d ld( dw)
r P 20 =l 1O du ~ 0
4 r 1 dr| rdr rdf” e

Internal boundary shear forces

o — — CI—
Ve T 4t 50 Vo = e "5

3. Equilibrium and Differential Equations
VW = p(r, 0)

23
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6. Stress Formulas

m,_z m
G, = . Py O = . e
(h/12) (h/12)
__Mge= MggZ
Cep — —3 Cep — —3
(h”/12) (h”/12)
T — m, o= Yo — 0
(" /12)
7. Boundary Conditions
V. or w q, or w
and and
m,, or ow m or dw
or = dr

24
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Axisymmetric plate solution

ViV = pAr,0) v? = li[ri ] or

Dd| d]ld{ dw
?a[’”a{;a(’”a)ﬂ - P

djld(d

1d/ dw 1y(7)
D;a(raj = LN+ Cinr+C, where Iyr) = jTa’r
d 2 2 2
D(rd—f) = Ii(r)+ Cl(% lnr—%) + CQ% s where Ii(r) = I rl,(r)dr
C 2 I(r
Dw(r) = ]4(r)+71(r21nr7r2)+C2%+C3lnr+C4 where fi(r) = j al )dr
I's are the loading integrals.
Uniform Load p_(r) = p,
) Iy P, P,y I Py
L(r) = p,rdr = : Iy(r) = [—dr = Iy(r) = [riydr = Iy(r) = [Zdr = =
Solid Plate
*  One boundary only.
* Displacement v and slope &4 must be bounded at » = o
C, =0 and Cy =0

25
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Annular plates

Non-dimensional equations in annular plates

* The algebra for evaluating the constants in annular plates with distrib-
uted loads can be tedious because of the logarithmic function (/n(r))
e Simplification in the algebra can be achieved by non-dimensionalizing

the variables.

T =r/R, P, =p,/D, R = Ry/R, 1<7
N ~~ m ~~ m ~~
o = Dw dw _ D(dw/dr) m, = 2 Mgy = 60 S - 4,
4 a % 22 2 PR
poRi Polt Poly Poly ot

(P =772 L(F)=7T/4 TL(T)=T/16 IL,(T)="T7 /64
~ 2
W(T) = L(T)+A(T T —T )/ 4+ A4, T /4+ AT + A4,
d/-\ —~2 —_ —~2
~aw TN v ~ r r
r d_? = ]3(7’ )+Al(7h/l r —T +A27 +A3

A5(1+v)

iy = L — (I /T =] -4, [(1+ V)T +(1-v)/2] /2~ 22 > + A1)/ T

~~ ~~ 2
meoo = —[(I; /?2)(1 W+ VvL]1-A4[(A+v)InT —(1-v)/21/2-A,(1 +v)/2-A45(1-Vv)/T
g, = (1, +4,)/7
where, 4, 4,, A5, and 4, are constants to be determine from boundary conditions.

* Oninner boundary 7 = 1 and n(7) = 0, simplifying algebra.

26
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C54 An edge view of an annular plate that is attached to a rigid shaft, clamped at the outer edge and pulled
with a force P as shown. Determine the maximum deflection w and maximum bending moments m,, and mg, in

terms of D, P,and R,. Use v =1/3 and R = 2.
<
I
iP

27
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