M. Vable Advanced Mechanics of Materials: Stress and Strain

Stress an Strain

[ ——

(a) Inadequate Strength (b) Adequate Stiffness

Courtesy (a) Rijan. http://en.wikipedia.org/wiki/File:Dhaka Savar Building Collapse.jpg (b) Mate 2nd Class Iaiak Sellers III. http://commons.wikimedia.org/
wiki/File:Diving.jpg
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The learning objectives in this chapter are:

» To understand the concepts of stress and strain,

» To understand stress and strain transformations in three dimensions.

» To understand the relationship of stress to internal forces and
moments.
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M. Vable Advanced Mechanics of Materials: Stress and Strain

Internally Distributed Force System

Normal to plane

» The intensity of internal distributed forces on an imaginary cut surface
of a body 1is called the stress on a surface.

» The mtensity of internal distributed force that 1s normal to the surface
of an imaginary cut is called the normal stress on a surface.

» The intensity of internal distributed force that is parallel to the surface
of an 1maginary cut surface is called the shear stress on the surface.
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M. Vable Advanced Mechanics of Materials: Stress and Strain

Stress at a Point

Outward normal

Internal force L ( AF:] )
G, = lim |[—
/ QA b AA:
direction of direction of the
outward normal to the internal force component.

imaginary cut surface.

» AA; will be considered positive if the outward normal to the surface is

n the positive 1 direction.

* A stress component is positive if numerator and denominator have the
same sign. Thus o;;is positive if: (1) AF; and AA; are both positive. (2)
AF; and AA; are both negative.

o Cxx txy Tz

e Stress Matrix i 3-D: " & 1
yx yy yz
Tox sz Gz

Table 1.1. Comparison of number of components

Quantity 1-D 2-D 3-D
Scaler 1=1° 1=2" 1=3"
Vector =14 g 3=3!
Stress 1=1? 4=22 9=32
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Stress Element

» Stress element is an imaginary object that helps us visualize stress at a
point by constructing surfaces that have outward normal in the coordi-
nate directions.

Stress Element in Cartesian Coordinates

xx xy xz

T (6] T
yx yy yz

Tox sz Gz

Stress Element in Cylindrical Coordinates
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M. Vable Advanced Mechanics of Materials: Stress and Strain

Stress Element in Spherical Coordinates

Symmetric Shear Stresses: «,, = t T, =1 1, =1

yx vz zy zx xz

* A pair of symmetric shear stress points towards the corner or away
from the corner.
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Cl.1 Show the non-zero stress components on the A B, and C faces of the

cube shown below.

Y Z
.C
0= ) Ty, = —15ksi T =0
_ : _ : _ . X 5
T, = —15ksi o, = 10ksi(C) Ty, = 25ksi 'B
1, =0 v, =25ksi o, =20ksi(T)] <| 4
Fig. P1.1

Class Problem 1.1

Show the non-zero stress components on the A,B, and C faces of the cube
shown below.

Z-/x

0= ) T = —15ksi T =0 . C
B = —15ksi B = 10ksi(C) T 25ksi Y 1 B
1. =0 T,y = 25ksi G,, = 20ksi(T) - A ¢
L ]
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Stress transformation in two dimension

y
(1B
! ) g n

s £ Qutward normal to
E inclined plane
o

&

X
Gorizontsl Plany”
t
g 8 b
A 0 x
(a)
z (©)
Stress Wedge Force Wedge
o, (dt cosB dz)
Ty (d cos dz)
Ty (dl 5110 dz)
O (df sint dz)
= 0+ 6 sin"0 +21_sinBcos O
G,y = O, CO8 Gy, 81N T,,SIN0 cos
5 ; .2
T, = —G,,c080smb + cyysme cosB + Tyl cos26 — sin 0)
o 2 2 .
G, = G,sIn 0+ G, €08 0 — 2txycos9s1n6
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Matrix Notation
n, = cosO B, = sin0 f, = cosh ty = sinki
True only in 2D:x = 90+6, 1, = -n, £, =,

My by

=™l m=il el - {%‘ '“xy]
The symmetry of shear stresses 61" =[]
6, = {n} [6]{n}
v, = {1} [c]{n}

G, = {1} [6]{t}

Traction or Stress vector
Mathematically the stress vector {S} 1s defined as:

{S} = [o]{n}
S, = o, n+ Tl
Sy = 'cyxnercyyny

e pressure 18 a scaler quantity.
 traction 1s a vector quantity.
 stress 1s a second order tensor.

Statically equivalent force wedge.

Sy {d1) ¥
Tyt (D)
Oyx 7y dd) San (dA()TH (n, dd) S, (dD
~af
Txy (nx dA) v Ty (nx d4)

4? Tyy (1, d4) qf Tyy (1, dd)
Gyy (1, dA4) G,y (1, dA)

{a@) (5 {c)

Stress vector in different coordinate systems. {S} = ¢, {n} +1, {f}
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Principal Stresses and Directions

{8} = [ol{p} = o,ip}

OR
{S} _ [Gxx Txy:| Py _ [Gp O:| Py
’ny ny py 0 GP p)’
OR
(Gxxicp) Txy Py -0
Tyx (ny_sp) Dy

Characteristic equation

2 2, _
cpfcp(cxﬁcyy)+(cxxcyyftxy) =)

. 2 2
Roots: G0 = HOuto,)%E '\/(Gxx T6,) — 46,0,y — Ty 2
OR

.. +0o 6. -6 N2 4
- [y [ )

» The eigenvalues of the stress matrix are the principal stresses.
» The eigenvectors of the stress matrix are the principal directions.
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Stress Transformation in 3-D

Direction cosines of a unit normal Equilibrating shear stress

n
* Sx Oxx Txy Tz
ny =3y n Sy = -
(ny =1 n, (s3=1 s, 6] = %, o, =,
7
“ SZ Tox sz Gz

S, = {1} [6]{n}
v, = {1} [6]{n}

o, = {1} Is]{1}
{5} = [olin}
Equilibrium condition: {S} = &, {n} + 1,41} implies |S|2 - ot 41
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Principal Stresses and Directions

» Planes on which the shear stresses are zero are called the principal
plancs.
» The normal direction to the principal planes is referred to as the princi-
pal direction or the principal axis.
» The angles the principal axis makes with the global coordinate system
are called the principal angles.
{8} = [ol{p} = o,{p}

OR
Oxx Txy Tyz Py Gp 0 0 Py
T Sy Te[) Py [T |V S O Ay
Tox sz O P 0 0 Gp P
OR
(Gx_x - Gp) Txy TJCZ px
Tyx (Gyy — 6p) Tyz Py~ v
Tox tzy (Gzz B Gp) P

» The eigenvalues of the stress matrix are the principal stresses.
» The eigenvectors of the stress matrix are the principal directions.

2 2 2
p.tp, TP, = 1

Principal stress convention

Ordered principal stresses in 3-D: G, >0,> 0,
Ordered principal stresses in 2-D: G, >0,
Principal Angles 0°<6,,0,,0,<180°

Characteristic equation

3 2 =
prflcp+]20pff3 0
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Stress Invariants

]1 - Gxx+cyy+czz
[2 = Oxx Txy + ny Tyz + Cxx Taz
Tyx ny sz Oz Tzx Oz
Oxx txy Tyz
[, =
3 I
T T 9]

—Ix A Lx—I, = 0

x|, = 24cosa+1,/3 Xy g = 72Acos(0ti600)+11/3

Roots:

A= U3} 1,3

cos3ow = [2(1,/3) —(I,/3)], + I,]/(247)

o I, = 6,+06,+0;,
Principal Stress Matrix [c] - 5, I, = 6,6, + 6,653 + 6,0,
O3 I3 = 016,05

Maximum Shear Stress

Plane Stress

Gy =0

(CCW)

« maximum shear stress exists on two planes, each of which are 45°
away from the principal planes.
max( = )

102
)

Gy — O3
2

G3—-0
2

Coax

Ed ’
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P2
rotation about principal axis 1

W( pl

_ _ 67063
¥ Toz = ~T3p T 5
P3

rotation about principal axis 2

G, — 0O
3 1
T = —1
31 13 )

P2
rotation about principal axis 3
(In-plane)
P1
o;—0
L 12 :

P3

P1

AR LLLRLRRR

P1
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Octahedral stresses

» A plane that makes equal angles with the principal planes is called an
octahedral planc.
» The stresses on the octahedral planes are the octahedral stresses.

]

a3

S
{S} = {02
Dty
B, = Bjhi T G5hg SGnd

.fS| —G J(G ni +ioing +oini)- 02
|”1| = |m| = |”3| = /43

G,.; — (6, +06,+065)/3 =1,/3

1 2 2 2
Tspp — 5,\/((51702) +(czfc3) +(c3fcl)
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Stress Deviators

Experiments have shown that hydrostatic pressure has negligible effect

on the vield point until extreme high pressures are reached! (> 360 ksi).
The high hydrostatic pressure docs not effect the stress-strain curve in the
elastic region but increase the ductility of the material, 1.e., permits large
plastic deformation before fracture.

Stress deviatoric matrix 1s the stress matrix from which the hydrostatic
state of stress has been removed. The hydrostatic pressure (p) is given by

Gm+cyy+czz G, 6, t 04 ‘Tl

P = 3 - 3 "3

where, 1 1s the first stress imvariant.

The stress deviatoric matrix in Cartesian coordinate principal coordinates
is given by

Stress deviatoric matrices

= Il -
Gxxig Tyy Txz GI—I1/3 0 0
1, 0 5y 1,/3 0
E T i
o OwTy 0 0 6y 1,/3
]1
i Tox Tzy O~ §_

The deviatoric stress invariants are as given below

J, =0
J, - c,—1,/3 0 = c, 1,73 0 & c,—1;/3 0
0 Gy, —1,/3 0 G173 0 Gy 1;/3
1.2 1 2 2 2 3\ 2
Jy = I2—§I1 = —(8)[(01—02) T(6,-65) t(63-06;)] = _(ﬁtoct
1 2.3 1
oy = I3—§I1I2+2—7[1 = 2—7(201—0'2—03)(202—0'3—01)(203—0'1—02)

1. Mendelson A, “Plasticity: Theory and Applications”, Macmillan Co., New York, (1968) section 2-5.
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Cl2 The stress at a point 1s given by the stress matrix shown. Determine:
(a) the normal and shear stress on a plane that has an outward normal at 37°, 120°,

and 70.43°, to x, v, and z direction respectively. (b) the principal stresses (¢) the sec-
ond principal direction and (d) the magnitude of the octahedral shear stress. (e)
maximum shear stress (I) the deviatoric stress invariants.

1812 9
12 12 —6|ksi
9 6 6
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Strain

» The total movement of a point with respect to a fixed reference coordi-
nates 1s called displacement.

» The relative movement of a point with respect to another point on the
body is called deformation.

» Lagrangian strain 1s computed from deformation by using the original
undeformed geometry as the reference geometry.

o Fulerian strain is computed from deformation by using the final
deformed gecometry as the reference gecometry.

» Relating strains to displacements is a problem in geometry.

Kinematics
Displacements k&

Average normal strain

« Elongations (Ly > L) result in posifive normal strains. Contractions
(Ly <L,) result in negative normal strains.
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Average shear strain
Undeformed grid Deformed grid

Bar With'Mas

: : | ; o
| Wooden King Tape

A | )

X
2
» Decreases in the angle (ov <7/ 2) result in positive shear strain.

Increase in the angle (o > m / 2) result in negative shear strain

Yav = -

Units of average strain

» To differentiate average strain from strain at a point.
e 1n/in, or cm/cm, or m/m (for normal strains)

 rads (for shear strains)

» percentage. 0.5% 1s equal to a strain of 0.005

o prefix: p =10 1000 p in/in is equal to a strain 0.001 in /
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Small Strain Approximation

Lp= JL2+ DY 4 2L, Doosd

N EoEn
Lf L0J1+(L +2L cosB

Q o

0 o o
Comall ~ Dzos(—)
0

Bl € % error
1.0 1.23607 19.1
0.5 0.58114 14.0
0.1 0.10454 4.3
0.05 0.005119 232
0.01 0.01005 0.49
0.005 0.00501 0.25

Small-strain approximation may be used for strains less than 0.01
Small normal strains are calculated by using the deformation compo-
nent in the original direction of the line element regardless of the ori-
entation of the deformed line element.

In small shear strain (y) calculations the following approximation may
be used for the trigonometric functions: tany =~y siny ~ vy cosy~ 1
Small-strain calculations result in linear deformation analysis.
Drawing approximate deformed shape 1s very important in analysis of
small strains.
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€13 A roller at P slides 1n a slot as shown. Determine the deformation in
bar AP and bar BP by using small strain approximation.
Op=0.25mm

Fig. C1.3

Class Problem 1.2

Draw an approximate cxaggerated deformed shape.
Using small strain approximation write equations relating o4p and Spp

to 8})_

dp = 0.25 mm
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M. Vable Advanced Mechanics of Materials: Stress and Strain
Engineering strain at a point
Y
TR & - € :hm(%) -
- //_\V - | *x Ax—» ONAX Ox
: g = lim (/_\;v) .
| P aps oMY Ay
g _ = lim (A—W) _ oW
Z Az s0\NAZ oz
' Au | Av Ju  ov
T "0 T N\ AW By Ox
Ay—0
ST __13
ek \ voo= oy = 1im(&+A_W) _ v, Su
\ \ . 4 . \ re o Aayso0NAzZ Ay 0z oy
\ A e) (E'sz)\ x Az—10
| ™ ol lq...l"”— — -
''''''''' AZ A
Z
A
; Aw | Au ow | du
= = 1 (—+—) e e
Tov = Taz Axlr—ilo Ax Az ox Oz
Az—>0
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Strain Transformation

Strain transformation is relating strains in two coordinate systems.

x = ncosO —fsind y = nsinf + tcosO

u, = ucost +vsinb v, = —usind + vcos

e = aun = a_una_x+a_una_y
o dp Ox On 8y én

Strain transformation equations in 2-D

2 5 2 .
£,,€0s 0 + 8,80 0 +w/xysmecose

Can 'y
g, =g sin29 +g . cos 29— sinBcosH
it XX vy ny
; i 2 . 2
Vi = —28,,51n0cosO + 2gyysm(-)cos6 + 9, cos 0 —sin"0)

Stress transformation equations in 2-D

2 . 2 .
G,, = 0,080 +cyys1n 9+2txysm600s(-)

o 2 2 )
G, = G, sin ¢ +cyycos 0 721xycos9s1n8

: ; . 2
= 29 —
B G,,cos0smb + cyysm@cos(—) + 1y, cos 0 —sin"0)

 tensor normal strains = engineering normal strains
 tensor shear strains = (engineering shear strains)/ 2
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Tensor strain matrix from engineering strains

Cxx Cyy T 'ny/z Cxz T 'sz/z
[e] = |en =102 &, €z = Ty’ 2
Cox sz/z €y sz/z €2z
r
Eun — {1} lel{n}
T
Snt - {t} [8]{”} ’Yn:_t - 28;11

T
g, = {1} [e]{1}
Characteristic equation
sgfflsg +Izspf]3 =0

Strain invariants

Il :gxx+8yy+gzz:81+82+83
£ & £, & £, B
IZ _ xx Txy [ | Yy Tyl | TAxx Tz | €187 T 8,83 T 838,
Syx Syy Szy Szz SZJC 8ZZ
By Sy By
I3 =5 8y 8| = 81828
€. By By

Maximum shear strain

g] — &y
2

€y — 83
2

€38
2

Vmax = m CIJC(
2

)
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The most general linear anisotropic material requires 21 independent constants.

Material Description

Linear Material Models

'YZ X

'Y_xy

Monoclinic material

Has 1 plane of symmetry.

Material

[C11C12C13C14C 15C 6]
C12C22C33C34C 500
C13C23C33C34C35C 3
CpCuCpCuCysCs
Cs51C52C53C54C 55C 56

_C61 C62C63 C64C65 C66_

Gy =15

XX

yy

zz

vz

zX

xy

If xy is the plane of symmetry then stress-strain relations in +ve & -ve z direction are the same.

Requires 13 independent material constants.

'YZ X

Y_xy

[C11C12C13 0 0 Oy
C12lpCa 0 0 Cyg
C13CnCs30 0 Cg
0 0 0 Cpulys0
0 0 0 CuCas

_C16C26C360 0 C66_

x, ¥, z are the material coordinate system.

XX

Yy

zZz

yz

ZX

XY

The zero’s in the C matrix can become non-zero in coordinate systems other than material

coordinate system.
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Orthotropic material
® Has two axis of symmetry.

® Requires 9 independent constants in 3 D.

e [CnBpEEd O 87 o
gyy C12C22C230 0 0 ny
e | |CiCisCy0 0 0 || o
Vs o o0 0cCu0 0 v,
Y., 00 0 0 Cy r
v L0 0 0 0 0 Chll x

* X, ¥ z are the material coordinate system.

® The zero’s in the C matrix can become non-zero in coordinate systems other than material
coordinate system.

For plane stress problems (requires 4 independent constants)

e — Dux Yor e = Jw Yay g = B Yo o Yy
e g ¥y yy XX xy
T E, B G, £, E,
Long Fiber Composite

® Fach lamina is an orthotropic material.

* A symmetric stacking about mid surface creates an orthotropic composite plate.

e
%"
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Transversely isotropic material
® Material is isotropic in a plane.

® Requires 5 independent material constants.

o [C11C1pCa 0 0 g 1| S
- CCCla0 0 0 5,y
e | [C1aCiaCn0 0 0 5,
v [0 0 0Cyo 0 :,.
- 00 0 0C, T
v L0 0 0 0 02¢C, Cyll

® The zero’s in the C matrix can become non-zero in coordinate systems other than material

coordinate system.

Short Fiber Composite

Chopped fiber is sprayed on to a epoxy produces a transversely isotropic material. It is isotropic in
the plane.

Isotropic Material

* An isotropic material has a stress-strain relationships that are independent of the orientation of
the coordinate system at a point.

®*  An isotropic body requires only two independent material constants

£, [C11C1Ch 0 0 L 1| Su
6| |CCuCp 0 0 0 5,
o, |CuCuCy 0 0 0 &,
Ts 0 0 02(C,-Cp) O 0 :,
I.. 0 0 0 0 2C;-Cp) v
v) L0 00 0 0 2, Cpl| x,

Engineering Constants: Cy; = 1/E, C}, = —v/E,and 2(C,, -C,) = L/G
¢ E = Modulus of Elasticity
®* (G = Shear Modulus of Elasticity
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* v = Poisson’s Ratio

Generalized Hooke’s Law
B, = [Gxx—v(cyy+czz)]/E T = Txy/G
_ _ E
gy = [0,,— V(0,0 I E Tys = T/ O G = Y
B = [Gzz—v(cxx+0yy)]/E g = Tuflr
Cyx 1 1 —v —v OSyx
Sy [ E|I7Y 1 Y[} O
8ZZ —¥ =¥ 1 GZZ

* @Generalized Hooke’s Law is valid for any orthogonal coordinate system.
® Principal direction for stress and strain are same ONLY for isotropic materials.

* A material is said to be homogencous if the material properties are the same at all points on
the body. Alternatively, if the material constants Cij are functions of the coordinates x, vy, or z,

then the material is called non-homogeneous.

Plane Stress and Plane Strain.

6. t., 0 Generalized B Jip 0
Plane Stres§ —— g | ™ ¥ ,
T, o, 0 Hooke’s Law s [ 0
v
0 0 0 0 0 &,=—pc,ta,)
Generalized [ . 0
g€ b 0 B xx Xy
v lay Hooke’s Law . - .
Pl Strain ————™ |V G 0 e
ane Strain Al K 0 o, =v(o, +a,)

_ Reaction Force (6, 0)
Deformation (g, = 0) Rigid Surface (g,, = 0)

Free Surface (g,, = 0)

\ Rigid Surface (g, = 0)

\
Free Surface (¢, =0) Deformation (g, # 0)

I

Reaction Force (G, #0)
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Non-linear material models

® Elastic-perfectly plastic in which the non-linearity is approximated by a constant.

® Linear strain hardening model (Bi-linear model) in which the non-linearity is approximated
by a linear function.

®* Power law model in which the non-linearity is approximated by one term non-linear function.

We will assume material behavior is same in tension and compression.

Elastic-perfectly plastic

T —_—
o e =N Lo D
- G:G_ Tyield""l
vield[ =~/ !
! p ~1 = Gy
™~c = F=
5 . ! Tyield ! i
yrleld —— £ : Yyield
vie '
! ; T
/]  — vield
73 Oyieldy Pield i
Mg @ ®
a
=
Bsald €284 Tyield ¥ ="Tyietd
c =1 Eg €01 <8 S8 T =4 Gy ~Nera > V= Vywara
—5 . —T..; —
vield 8<%, Tyield VS Vyield

* The set of points forming the boundary between the clastic and plastic region on a body, is
called the elastic-plastic boundary.

1. On the elastic-plastic boundary the strain must be equal to the yield strain, and stress equal to
yield stress.

2. Deformations and strains are continuous at all points including points at the elastic plastic
boundary.

3. In beam bending, the location of neutral axis depends material property, geometry, and load-
ing.

1-28



M. Vable Advanced Mechanics of Materials: Stress and Strain

Linear strain hardening material model

®)

1

Fe

g=0

|

n > 1 —soft rubber, muscles, and organic materials.

—E(—S)n <0

n < 1 —metals and plastics

T —
l82 — . Vs bl
P’ T T
— ~ yield e St Galf—Yei 1)
yield] T T Oyielg T Fo (B 2pieng) L sl 28 eld
. P : 1 = Gl'y
~c=FE = !
i ! ! Yyicld ! i
el ) .IM = : Tyield
' yie !
: T= 1t Gyt ) !
yield 72 vield” J. .1 |
=5 . +E + . 1
0-yleld 2(8 Eyleld) A Gyietd . Z yield
~ e ——
= @ )
£2¢, .
Gy.ield +E2(g - Sy;'eld) yield
c = Elg 78yields £< Syiefd
£2¢€, .
_Gy.ield +E2(8 + Sy;'eld) yield
Power Law
T D<n<l
!
=Gy [/
nx>1 7/ 1
"
Y
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Effects of Temperature

o

Test performed at 7,

- Test performed at T_+AT

Normal Stress

O

Oy 1
|<'_ aAT —|>|<|—%—t>| Normal Strain

g = 2+ AT
E

a is linear coefficient of thermal expansion that has units of w°F or w°C

No thermal stresses are produced in a homogeneous, isotropie, unconstrained body due to uni-

form temperature changes.

By = [cxva(cnyr . )/ E+a AT

£y, = [6,,— V(6,6 )/E+a AT

g, = [czz—v(cxercyy)]/EJroc AT

Vg = 'cxy/G

Tz = T’ G Thermal Strain
Yax = /Y

Mechanical Strain
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Cl4 The stress at a point, material properties, and change in temperature are
as given below. Caleulate €y, €yy, Yxy» €27, and ,, (a) assuming plane stress, and (b)
assuming plane strain.

o, = 300 MPa(C) S, = 300 MPa(T) 1,, = 150 MPa

G = 15 GPa v =102 o = 260u°C AT =95%
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Failure Theories

® A failure theory is a statement on relationship of the stress components to material failure
characteristics values.

Ductile Material Brittle Material
Characteristic failure Yield stress Ultimate stress
stress
Theories 1. Maximum shear stress 1. Maximum normal stress
2. Maximum octahedral shear 2. Modified Mohr
stress

Maximum shear stress theory

For ductile materials the theory predicts
A material will fail when the maximum shear stress exceeds the shear stress at vield that is
obtained from uniaxial tensile test.

The failure eriterion is

TUmax 3 Tyield

max(|o| - o,

a|‘52*‘53

» |G3 o Gl|) < Gyiefd

Maximum octahedral shear stress theory (Maximum distortion
strain energy or von-Mises criterion)

For ductile materials the theory predicts
A material will fail when the maximum octahedral shear stress exceeds the octahedral shear
stress at yield that is obtained from uniaxial tensile test.

The failure criterion is

Tocts tyield

1 2 2 2
—ZJ(GIGZ) +(6,-063) T(63-6;) Scyiefd

Y;

Equivalent von-Mises Stress

B 1'\/ 2 2 2
Cyon — ﬁ (GI_GZ) +(GZ_G3) Jr(03_01) GvonS yield|
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Failure Envelopes for ductile materials in plane stress

Maximum octahedral shear stress.

Oyield

~SOyield #

G
# Cvicld ]

Maximum shear stress

Maximum normal stress theory

For brittle materials the theory predicts
A material will fail when the maximum normal stress at a point exceed the ultimate normal
stress (o) obtained from uniaxial tension test.

max(cl, G, 03) <6,

® can be used if principal stress one is tensile and the dominant principal stress.

Examples of brittle and ductile material failure
T

A 0 T a0

Tox

Cast Iron

Aluminum
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Mohr’s theory

For brittle materials the theory predicts

sion, and to pure shear.

Failure envelope m

A material will fail if a stress state is on the envelope that is tangent to the three Mohr’s circles
corresponding to: uniaxial ultimate stress in tension, to uniaxial ultimate stress in compres-
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® If both principal stresses are tensile than the maximum normal stress has to be less than the
® If both principal stresses are negative than the maximum normal stress must be less than the

® If the principal stresses are of different signs then for the Modified Mohr’s Theory the failure

Gy

G is the magnitude of the compressive strength.
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13 On a free surface of aluminum (¥ = 10,000 ksi, v =0.25,
Oyield = 24 ksi), the strains recorded by the three strain gages shown below are

g, =—000 p 1n/in, g, = 500 p 1/in, and €, = 400 p 1/in. By how much can the loads
be scaled without exceeding the yield stress of aluminum at the point? Use the max-
imum shear stress theory.

45 60° 2
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