May 4th, 2000

EM 440

Exam 2

1 A rigid plate is pivoted at point C. After the load P is applied the temperature of bar B is observed to decrease by 50° F. Determine the axial stress in bar A and the deformation of bar B. The area of cross-section of both bars is 2 in².

	Modulus of Elasticity	Coefficient of Thermal Expansion	Length
Bar A	10,000 ksi	16 (10 ⁻⁶)/ ^o F	10 inches
Bar B	30,000 ksi	10 (10 ⁻⁶)/ ^o F	18 inches

2 A beam of elastic-perfectly plastic material has a yield stress of 50 ksi and a cross-section shown. Determine the location of the neutral axis when point A is at yield stress.

(3a, b) A stepped shaft is subjected to a torque T as shown. The shaft material has a shear yield stress of 120 MPa and Shear Modulus of Rigidity of 80 GPa. The plastic zone in AB is 40 mm deep. Determine:

(b) the depth of plastic zone in BC.

(c) the maximum torsional shear strain

(c) A force F is applied to the roller that slides inside a slot. Both bars have an area of cross-section of A = 100 mm², Modulus of Elasticity E = 200 GPa, and a yield stress of 250 MPa. Bar AP and BP have lengths of L_{AP} = 200 mm and L_{BP} = 250 mm respectively. Determine the collapse load

In parts (d) and (e) below use the composite cross-section shown in which $E_1=30,000$ ksi and $E_2=10,000$ ksi. Point a is at the bottom of the cross-section and points B and C are at the top of the cross-section.

(d) The AXIAL normal stress at A is 12 ksi (T). What are the axial stresses at points B and C?

(e) The BENDING normal stress at A is 12 ksi (T). What are the bending normal stresses at B and C?

ANSWERS

1.	$\sigma_A = 5 \text{ ksi (C)}$	$\delta_{\rm B} = 0.015$ in
2.	a=2.7 in	
3a	$(depth)_{BC} = 25 \text{ mm}$	
3b	$\gamma_{\rm max} = 4500 \ \mu$	
3c	$P_{\text{collapse}} = 32,216\text{N}$	
3d	$\sigma_{\rm B} = 12 \text{ ksi} (\text{T})$	$\sigma_{\rm C}$ =36 kxi (T)
3e	σ _B =12 ksi (C)	$\sigma_{\rm C} = 36 \rm ksi(\rm C)$