Answers are at of this exam.

1.

(a) Show the non-zero stress components on the A,B, and C faces of the cube. Use the coordinate system that is given only.

$$\begin{bmatrix} \sigma_{xx} = 80 \text{MPa}(T) & \tau_{xy} = -30 \text{MPa} & \tau_{xz} = 0 \\ \tau_{yx} = -30 \text{MPa} & \sigma_{yy} = 0 & \tau_{yz} = 70 \text{MPa} \\ \tau_{zx} = 0 & \tau_{zy} = 70 \text{MPa} & \sigma_{zz} = 40 \text{MPa}(C) \end{bmatrix}$$

(b) Draw the shear stress due to torsion on the stress cubes at points A and B. Is the shear stress positive or negative? Circle the appropriate answers

$$(\tau_{xy})_A = positive / negative$$

$$(\tau_{xy})_B = positive / negative$$

(c) Assuming a positive shear force V_y in bending (a) sketch the direction of the shear flow along the center-line on the thin cross-sections shown. (b) At points A, B, C, and D, determine if the stress component is τ_{xy} or τ_{xz} and if it is positive, negative, or zero. Circle the appropriate answers

$$(\tau_{xv})_A$$
 or $(\tau_{xz})_A$ positive / negative / zero

$$(\tau_{xy})_B$$
 or $(\tau_{xz})_B$ $\,$ positive / negative/ zero

$$(\tau_{xy})_C$$
 or $(\tau_{xz})_C$ positive / negative/ zero

$$(\tau_{xy})_D$$
 or $(\tau_{xz})_D$ $\,$ positive / negative/ zero

- (d) The axial strain in a 20 in. long rod is given by $\varepsilon_{xx} = \frac{0.2}{\left(40 x\right)^2}$. Determine the elongation of the rod.
- (e) The displacements u and v in the x and y directions respectively were measured by Moire' interferometry. Displacements of 9 points on the body and are as given below. Using central difference, determine the shear strain γ_{xy} at point 5.

Point	u (µmm)	v (µmm)	Point	u (µmm)	v (µmm)
1	0.000	0.000	6	-0.080	0.240
2	-0.112	0.144	7	0.128	0.384
3	-0.128	0.256	8	-0.048	0.336
4	0.112	0.176	9	0.128	0.384
5	-0.032	0.224			

2. The stress at a point is given by the stress matrix:

$$\begin{bmatrix} 40 & -20 & 10 \\ -20 & 30 & 0 \\ 10 & 0 & \sigma_{zz} \end{bmatrix} ksi$$

The three principal stresses of the matrix are: $\sigma_1 = 56.21 \text{ ksi}(T)$

$$\sigma_2 = 14.95 \text{ ksi}(T)$$
 $\sigma_3 = 51.16 \text{ ksi}(C)$

$$\sigma_3 = 51.16 \text{ ksi(C)}$$

(a) Determine the three stress invariants.

- (b) Determine the stress σ_{77} .
- (c) Determine the orientation of principal direction associated with principal stress 14.95 ksi (T).
- (d) The material yield stress is 120 ksi in tension. Determine the factor of safety at the point using octahedral shear stress theory
- (e) A crack was discovered on a plane that has an outward normal at angles of 36.87°, 60.0°, and 70.63° with the x, y and z axis respectively. The critical stress intensity factor for the material is $22k\sin\sqrt{in}$, what would be the critical crack length on that plane.
- A beam is loaded and supported as shown. Determine the slope and the reaction force at point B in terms of w, L, 3. E, and I. Use the coordinate system shown.(BE METHODICAL)

Answers

 $(\tau_{xy})_B = positive$ 1b $(\tau_{xy})_A$ = negative

 $(\tau_{xy})_C$ positive $(\tau_{xz})_D$ negative 1c $(\tau_{xz})_A$ negative $(\tau_{xz})_B$ positive

1e. $\gamma_{xy} = 128 \,\mu \text{ rads}$

Elongation = 0.005 in 1d. $I_2 = -2800 \text{ ksi}^2$ $I_3 = -42991.8 \text{ ksi}^3$. 2a. $I_1 = 20 \text{ ksi}$

 $\sigma_{zz} = 50 \text{ ksi (C)}$ 2c. $\theta_x = 53.2^{\circ} \text{ or } 126.8^{\circ}$ $\theta_y = 37.29^{\circ} \text{ or } 142.7^{\circ}$ $\theta_z = -84.8^{\circ} \text{ or } 95.2^{\circ}$ 2e. $2a_{crit} = 0.4305$ in 2d. K=1.27

3. slope= $-\left(\frac{5\text{wL}^3}{48\text{EI}}\right)$ rads force= $\frac{\text{wL}}{8}$ kN